
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
62

31
--

FR
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Java Components Vulnerabilities
-

An Experimental Classification
Targeted at the OSGi Platform

Pierre Parrend — Stéphane Frénot

N° 6231

June 2007

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Java Components Vulnerabilities

-

An Experimental Classi�cation

Targeted at the OSGi Platform ∗

Pierre Parrend, Stéphane Frénot

Thème COM � Systèmes communicants
Projet ARES

Rapport de recherche n° 6231 � June 2007 � 87 pages

Abstract: The OSGi Platform �nds a growing interest in two di�erent applications
domains: embedded systems, and applications servers. However, the security properties of
this platform are hardly studied, which is likely to hinder its use in production systems.
This is all the more important that the dynamic aspect of OSGi-based applications, that
can be extended at runtime, make them vulnerable to malicious code injection.

We therefore perform a systematic audit of the OSGi platform so as to build a vul-
nerability catalog that intends to reference OSGi Vulnerabilities originating in the Core
Speci�cation, and in behaviors related to the use of the Java language. Implementation of
Standard Services are not considered.

To support this audit, a Semi-formal Vulnerability Pattern is de�ned, that enables to
uniquely characterize fundamental properties for each vulnerability, to include verbose de-
scription in the pattern, to reference known security protections, and to track the imple-
mentation status of the proof-of-concept OSGi Bundles that exploit the vulnerability.

Based on the analysis of the catalog, a robust OSGi Platform is built, and recommenda-
tions are made to enhance the OSGi Speci�cations.

Key-words: OSGitm Platform, Security, Dependability, Java, Hardened Execution Plat-
form, Vulnerability Catalog

∗ This Work is partialy founded by Muse IST Project n°026442.

Vulnerabilités des Composants Java

-

Une Classi�cation Expérimentale

Dans le Cadre de la Plate-forme OSGi

Résumé : La plate-forme d'exécution OSGi rencontre un intérêt grandissant dans deux
domaines d'applications di�érents: les systèmes embarqués, et les serveurs d'applications.
Cependant, les propriétés de cette plate-forme relatives à la sécurité ne sont que très peu
étudiées, ce qui peut fortement freiner son adoption dans les systèmes industriels. Ceci est
d'autant plus critique que la possibilité d'extension dynamique à l'exécution o�erte par la
plate-forme OSGi rend celle-ci vulnérable à l'injection de code malicieux.

Nous e�ectuons un audit de l'environnement d'exécution OSGi, a�n de créer un catalogue
de vulnérabilités. Nous cherchons à référencer les vulnérabilités causées par la spéci�cation
`Core', ou bien par la machine virtuelle Java sous-jacente. Les autres éléments dé�nis par
OSGi, comme les services standards, ne sont pas considérés.

A�n de mener à bien cet audit, nous dé�nissons un Pattern de Vulnérabilité semi-formel,
qui permet de décrire les caractéristiques des vulnérabilités de manière unique, de donner
des informations complémentaires, de référencer les protections existantes, et d'identi�er le
statut de l'implémentation des Bundles OSGi de tests qui démontrent chaque vulnérabilité.

A partir de cette analyse, un plate-forme OSGi robuste est construite, et des recomman-
dations pour les spéci�cations OSGi sont données.

Mots-clés : Plate-forme OSGitm, Sécurité, Java, Plate-forme d'exécution renforcée, Ca-
talogue de Vulnérabilités

OSGi Vulnerabilities 3

Contents

1 Introduction 8

2 Characterization of Vulnerabilities in Component-based Systems 10
2.1 De�nitions . 10
2.2 From Databases to Top-Vulnerability Lists . 10
2.3 Vulnerability Patterns . 13

3 The Semi-formal Software Vulnerability Pattern 15
3.1 The Structure of the Semi-formal Vulnerability Pattern 16
3.2 Vulnerability Taxonomies for OSGi-based Systems 17
3.3 A Vulnerability Example: `Management Utility Freezing - In�nite Loop' . . . 21

4 Requirements for secure OSGi Systems 24
4.1 Catalog Analysis . 24
4.2 Requirements for a Hardened OSGi Platform 30
4.3 Recommendations for a Hardened Execution Environment 33

5 Conclusions 36

A The OSGi platform 40
A.1 Overview . 40
A.2 The Bundles . 40
A.3 Interactions between Bundles . 41

B Vulnerabilities List 42
B.1 The Lindqvist Classi�cation . 42
B.2 Common Weaknesses Enumeration (CWE) 43
B.3 Nineteen Dealy Sins . 43
B.4 OWASP Top Ten . 44
B.5 Seven Kingdoms . 44

C Formal Expression of the Vulnerability Pattern 46

D Vulnerability Catalog 48
D.1 Bundle Archive . 48

D.1.1 Invalid Digital Signature Validation 48
D.1.2 Big Component Installer . 50
D.1.3 Decompression Bomb . 51

D.2 Bundle Manifest . 52
D.2.1 Duplicate Package Import . 52
D.2.2 Excessive Size of Manifest File . 53
D.2.3 Erroneous values of Manifest attributes 54

RR n° 6231

4 Parrend & Frénot

D.3 Bundle Activator . 55
D.3.1 Management Utility Freezing - In�nite Loop 55
D.3.2 Management Utility Freezing - Thread Hanging 57

D.4 Bundle Code - Native . 58
D.4.1 Runtime.exec.kill . 58
D.4.2 CPU Load Injection . 59

D.5 Bundle Code - Java . 60
D.5.1 System.exit . 60
D.5.2 Runtime.halt . 61
D.5.3 Recursive Thread Creation . 62
D.5.4 Hanging Thread . 63
D.5.5 Sleeping Bundle . 64
D.5.6 Big File Creator . 65
D.5.7 Code Observer . 66
D.5.8 Component Data Modi�er . 67
D.5.9 Hidden Method Launcher . 68
D.5.10 Memory Load Injection . 69
D.5.11 Stand Alone In�nite Loop . 70
D.5.12 In�nite Loop in Method Call . 71
D.5.13 Exponential Object Creation . 72

D.6 Bundle Code - OSGi APi . 73
D.6.1 Launch a Hidden Bundle . 73
D.6.2 Pirat Bundle Manager . 74
D.6.3 Zombie Data . 75
D.6.4 Cycle Between Services . 76
D.6.5 Numerous Service Registration . 77
D.6.6 Freezing Numerous Service Registration 78

D.7 Bundle Fragments . 79
D.7.1 Execute Hidden Classes . 79
D.7.2 Fragment Substitution . 80
D.7.3 Access Protected Package through split Packages 81

E Attack Implementations 82
E.1 In�nite Loops . 82

E.1.1 First Option . 82
E.1.2 Second Option . 82
E.1.3 Third Option . 82
E.1.4 Fourth Option . 82
E.1.5 Fifth Option . 83
E.1.6 Other Implementations . 83

E.2 Hanging Thread . 83
E.2.1 First Option . 84
E.2.2 Second Option . 86

INRIA

OSGi Vulnerabilities 5

E.2.3 Other Implementations . 86

F XML2Tex Documentation Generator 87

RR n° 6231

6 Parrend & Frénot

List of Figures

1 Potential Locations of malicious Code in a Bundle 18
2 Vulnerability Sources in an OSGi-based System 19
3 Potential Targets of Attacks against an OSGi Platform 19
4 Consequences of the Vulnerabilities of the OSGi Platform 20
5 Introduction Time for the identi�ed �aws . 20
6 Exploit Time for the identi�ed Flaws . 20
7 Type of OSGi Vulnerabilities according to Neumann and Parker's classi�cation 25
8 Entities that are Source of the vulnerabilities 27
9 Functions that prove to be dangerous in the context of an OSGi Platform . . 28
10 Flaws in an OSGi Execution Environment . 29
11 Targets of Attacks against an OSGi Execution environment 29
12 Actual Protection Mechanisms . 32
13 Cardinality for each potential Security Mechanisms for the OSGi platform . . 32
14 Overview of an OSGi Platform . 40
15 Intern Structure of an OSGi bundle . 41
16 Life Cycle of an OSGi Bundles inside the platform 42
17 Interaction Mechanisms between the OSGi Bundles 42
18 XML2Tex Process . 87

INRIA

OSGi Vulnerabilities 7

List of Tables

1 Classi�cation of OSGi Vulnerabilities according to Lindquist's[LJ97] Intrusion
Results . 26

2 Vulnerabilities for the main Open Source OSGi Platforms 31

RR n° 6231

8 Parrend & Frénot

1 Introduction

The OSGi Platform, which enables multi-application management over Java Virtual Ma-
chines, is currently seeing a dramatic increase in its application domains. First targeted at
embedded systems such as multimedia automotive devices, it has since widespread in the
world of applications, with the Eclipse Integrated Development Environment, and then to
application servers, such as IBM Websphere 6.1, or recent development with JBoss. Sun is
envisioning to integrate it in the Sun JVM, and several Java Speci�cation Request (JSR)
work groups have been set up on the subject1.

However, target systems are likely to be highly networked ones, and security implications
have so far been mostly overlooked. Actually, the runtime extensibility of applications that is
supported by the OSGi platform open a brand new attack vector: code can be installed on the
�y, and no mechanism currently guarantees that this code is not malicious. As OSGi-based
systems move from Open-Source projects and closed embedded devices toward large-scale
systems, this weakness can turn into a major vulnerability, unless security implications are
better understood. We therefore perform in this study a systematic analysis of vulnerabilities
that are implied by OSGi bundles, and propose adequate counter-measures.

Up to now, two complementary mechanisms are used to enforce security in the context of
OSGi-based systems. The �rst mechanism is bundle digital signature [OSG05, PF06], which
guarantees that only bundles from trusted issuers are installed. This trust requirement
forces the issuer to publish only safe bundles, since he will liable for any incident caused by
the code he provides. The second mechanism is based on Java permissions, that enable to
switch on or o� some attack-prone features of the Java Virtual Machine. These mechanisms
are mostly insu�cient to guarantee that systems are safe. First, knowing the identity of a
bundle issuer does not give guarantees related to the quality of its bundles. Secondly, most
implementations do not have a proper implementation of the digital signature mechanism:
they rely on the JVM built-in veri�cation mechanism, which is not compliant with OSGi
speci�cations [PF07]. And, lastly, Java permissions can not be considered as a panacea,
since they are usually not dynamic, and have a great cost in term of functionality, but also
in term of performance.

New methods and new security mechanisms therefore need to be de�ned to provide
hardened OSGi Platforms. We present in this report our contribution to this problem,
by addressing several requirements. A method for analyzing the security properties of the
OSGi Platform is de�ned. It is based on a catalog of vulnerabilities, and can therefore be
completed when further knowledge relative to OSGi Vulnerabilities is gathered. Based on
the analysis of this catalog, OSGi speci�c vulnerabilities are identi�ed, and a prototype is
built to show the security mechanisms that can be used. Recommendations for an evolution
of the speci�cation of the OSGi Core platform are proposed to enable the OSGi Community
to take advantage of this work.

This research report is organized as follows. Works related to vulnerability characteri-
zation and analysis are presented in Section 2. A de�nition of our Software Vulnerability

1http://jcp.org/en/jsr/detail?id=277,http://jcp.org/en/jsr/detail?id=291

INRIA

OSGi Vulnerabilities 9

Pattern is given in Section 3: it characterizes the properties of an OSGi system that need
to be listed so as to support vulnerability analysis. The analysis of the vulnerability catalog
is then provided, and recommendation for building a hardened OSGi Platform is given in
Section 4.

Complementary informations are to be found in the Appendices. In particular, a pre-
sentation of the OSGi Platform is given in Appendix A; the formal expression of the Vul-
nerability Pattern we de�ne is given in Appendix C; the vulnerability catalog in given in
its integrality in Appendix D; and the speci�c implementations of attacks based on the
identi�ed vulnerabilities are given in Appendix E.

RR n° 6231

10 Parrend & Frénot

2 Characterization of Vulnerabilities in Component-based

Systems

The classi�cation of the security - and vulnerability - properties of systems is necessary to
comprehend their weaknesses and to make them more robust. We present here the e�ort
that have been done to establish a precise knowledge of what vulnerabilities are, how to
analyse them, and how to take advantage from them to improve the computing systems.

First, the terms that are used to characterize vulnerabilities are de�ned. Next, the
disclosure mechanisms for software �aws are presented. And Vulnerability Patterns that
support vulnerability analysis are given.

2.1 De�nitions

The classi�cation of security properties is based on the distinction between attack, vulner-
ability, and �aw. The related malicious actions can be prevented by the use of security
protections, or countermeasures. The de�nitions of these terms follow.

Security: the concurrent existence of a) availability for authorized users only, b) con�den-
tiality, and c) integrity [AJB00].

Attacks: actions that attempt to defeat the expected security status of a system.

Software vulnerability: an instance of an error in the speci�cation, development, or con-
�guration of software such that its execution can violate the security policy [Krs98].

Software Flaw: a �aw is a characteristic of a software system that builds, when put to-
gether with other �aws, a vulnerability. The more generic term of WIFF (Weaknesses,
Idiosyncrasies, Faults, Flaws) is also used [MCJ05].

Security Protection, or Mitigations, or Countermeasures or Avoidance strategies: mech-
anisms and techniques that control the access of executing programs to stored infor-
mation [SS73] or to other programs.

2.2 From Databases to Top-Vulnerability Lists

Vulnerability disclosure aims at providing users and designers informations that enable them
to track the security status of their systems. Two main approaches exist: �rst, vulnerabili-
ties of widespread applications are published in Reference Vulnerability Information (RVI)
Databases so as to centralize this information; secondly, these vulnerabilities are classi�ed
according to Top-Vulnerability Lists, that support a comprehensive views of potential weak-
nesses.

INRIA

OSGi Vulnerabilities 11

Reference Vulnerability Information (RVI) Databases Catalogs, Lists and Tax-
onomies are the favorite vector for expressing the vulnerabilities that are identi�ed in soft-
ware systems. The approach varies according to the target of the vulnerability identi�cation
work. Extensive databases are meant to maintain up to date references on known software
vulnerabilities, so as to force the system vendor to patch the error before hackers can exploit
it. Taxonomies are particularly used in research works, which foster to improve the knowl-
edge relative to the vulnerabilities. Their goal is to develop tools based on this taxonomies.
The drawback of these systematic approaches - catalog and taxonomies - is that they are
not easy to remember, and are thus of limited usefulness for developers or code auditor.
Several Top Vulnerability Lists have been proposed to solve this problem, and provide the
software professionals with convenient practical data.

The main existing references are vulnerability databases. They are also known under the
denomination of Re�ned Vulnerability Information (RVI) sources. Two main types of RVI
exists: the vulnerability mailing lists, and the vulnerability databases.

The main mailing lists are the following:

� Bugtraq, 1993 onwards (see http://msgs.securepoint.com/bugtraq/),
� Vulnwatch, 2002 onwards (see http://www.vulnwatch.org/),
� Full Disclosure, 2002 onwards (see among others http://seclists.org/).

The reference vulnerability databases are the following. They are meant to publish and
maintain reference lists of identi�ed vulnerabilities.

� the CERT (Computer Emergency Response Team) Database. It is based on the Com-
mon Language for Security Incidents [HL98]2.

� the CVE (Common Vulnerabilities and Exposures) Database3.
� the CWE (Common Weaknesses Enumeration) Database. It is bounded with the
CWE, and aims at tracking weaknesses and �aws that have not yet turned out to be
exploitable for attackers4.

� the CIAC (Computer Incident Advisory Capability) Database5.
� the OSVDB, Open Source Vulnerability Database6. It is centered at Open Source
Products.

Complementary Re�ned Vulnerability Informations Sources are the following organiza-
tions: SecuriTeam 7, Packet Storm Security 8, the French Security Incident Response Team
9, ISS X-Force 10, Secunia, and SecurityFocus.

2http://www.cert.org/, Carnegie Mellon University
3http://cve.mitre.org/, US Departement of Homeland Security and Mitre Corporation
4http://cwe.mitre.org/index.html, US Departement of Homeland Security and Mitre Corporation
5http://www.ciac.org/ciac/index.html, US Departement of Energy
6http://osvdb.org/, Open Source
7http://www.securiteam.com/, Beyond Security Company
8http://packetstormsecurity.nl/, Non-Pro�t Organization
9http://www.frsirt.com/, A.D.Consulting Company

10http://xforce.iss.net/xforce/alerts, IBM Company

RR n° 6231

12 Parrend & Frénot

The limitations of the RVIs is that they follow no stable policy, which makes comparison
between sources and between the item of a given sources di�cult [Chr06].

Top-Vulnerability Lists Since catalogs are not so easy to remember, and therefore to
put into practice, several `Top N' lists have been de�ned. The motivation for such lists is
the recurrent drawbacks of other approaches: vulnerability catalogs do not provide a useful
overview of the identi�ed vulnerabilities [Chr06].

Therefore, an alternative approach has been developed: to publish lists of prevalent
attack categories. Their goal is to be used as reminder for developer or security analysts
[McG06], and to serve as reference for software product characterization, through integration
into security-based code assessment tools [MCJ05]. The most important of these vulnera-
bility lists are presented.

One classi�cation of computer security Intrusions is given by Lindqvist [LJ97] (see ap-
pendix B.1). It contains external and hardware misuse, and several software misuse cases:
bypassing intended control, active and passive misuse of resources, preparation for other
misuse cases...

The Plover classi�cation11 is an example of rationalization of Vulnerability catalogs to
support analysis. It is based on the MITRE CVE Database, and contains 300 speci�c entries
that re�ect 1400 vulnerabilities identi�ed in the CVE database. Its goal is to suppress re-
dundancy from the original database, so as to enable scienti�c analysis, e.g. using statistical
approaches [Chr05].

The Nineteen Deadly Sins of software systems are de�ned by Michael Howard, from
Microsoft [HLV05] (see appendix B.3). They describe the most common vulnerabilities that
are to be found in enterprise information systems. They concern Web based systems, as well
as the architecture of the information systems and the technologies involved.

The Open Web Application Security Project (OWASP) maintains a TOP 10 of Web
Applications vulnerabilities12 (see the appendix B.4). It concerns input validation, data
storage, as well as con�guration and error management. Another consortium for Web Ap-
plication security enforcement, the WASC (Web Application Security Consortium), provides
its own threat classi�cation13.

A convenient vulnerability list is provided by Gary McGraw, through the Seven King-
doms of software vulnerabilities [McG06] [TCM05]. The number 7 is chosen to be easily
remembered, and each entry is completed with Phyla i.e. precise example of the broader
categories that are de�ned by the Kingdoms. The kingdoms are the following: Input Valida-
tion and representation, API abuse, Security Features, Time and state, error handling, code
quality, encapsulation + environment (see the appendix B.5). This classi�cation is targeted
at enterprise information systems.

The publication of newly discovered vulnerabilities and of Top-Lists helps the practi-
tioner stay informed of the actual security risks of the system they use, but they provide

11http://cve.mitre.org/docs/plover/
12http://www.owasp.org/index.php/OWASP_Top_Ten_Project
13http://www.webappsec.org/projects/threat/

INRIA

OSGi Vulnerabilities 13

little support for systematic analysis. Vulnerability Patterns must be de�ned to formalize
vulnerability informations.

2.3 Vulnerability Patterns

The descriptive spirit of Design Pattern [Ale77], [GHJV94], [MM97], is well suited for ap-
plication in the security �elds, where the question of organization and exploitation of the
knowledge is central to the protection of systems - and not straightforward, if one judges
from the various approaches that are used. Two types of patterns are de�ned in the security
domain: Attack Patterns, and Vulnerability Patterns.

Attack Patterns represent potential attacks against a system. They model the precon-
ditions, process and postconditions of the attack. They can be combined with attack trees,
so as to automate the identi�cation of attacks that are actually build from simpler atomic
attacks [MEL01]. An extensive presentation of the applications of attack patterns is given
in the book by Markus Schumacher [Sch03]. The use of Attack Patterns together with
software architecture description to identify vulnerabilities is described by Gegick [GW05].
The limitation of this approach is that the attacks must be modelized, but the system must
also be, which makes this approach impractical, and often not realistic based on the actual
knowledge that is available on systems.

The Vulnerability Patterns are used in the catalog of vulnerabilities. They often contain
a limited number of information that are meant to identify the vulnerability, but also to not
make it easily reproduceable without a reasonable amount of e�ort, to prevent lazy hackers
to exploit the vulnerability databases as a source of ready-to-exploit attack references.

We list here the most wide-spread Vulnerability Patterns, along with the attribute they
contain:

� Rocky Heckman pattern14: Name, type, subtype, AKA, description, more information;
� CERT (Computer Emergency Response Team) pattern: name, date, source, systems
a�ected, overview, description, qualitative impact, solution, references;

� CVE15 (Common Vulnerability and Exposures) pattern: name, description, status,
reference(s);

� CIAC16 (US Department of Energy) pattern: identi�er, name, problem description,
platform, damage, solution, vulnerability assessment, references.

These Vulnerability Patterns are quite simple ones. They have an informative goal, but
do not intend as other patterns do at supporting the reproduction of the vulnerability with
a minimum of e�ort. This approach makes sense relative to their use context - making users
and administrators aware of the existence of the �aws - but are not su�cient to support
detailed analysis of the related vulnerabilities.

14http://www.rockyh.net/
15http://cve.mitre.org/
16http://www.ciac.org/ciac/index.html

RR n° 6231

14 Parrend & Frénot

So as to support the automation of the security process, and to make vulnerability
analysis possible, it is necessary to put constraints on the Vulnerability Patterns. This is
performed through the de�nition of taxonomies, which provide a �ne grain description of
the properties of each vulnerability.

Each taxonomy should verify the properties of a valid taxonomy, as de�ned by [Krs98]
and [HL98]. These properties are the following: objectivity, determinism, repeatability,
speci�city (disjunction), observability.

The seminal work on vulnerability taxonomy has been performed by Abbott [ACD+75]
and Bisbey [BH78]. The �aws are classi�ed by type of error (such as incomplete Parameter
validation). This approach turns out not to support deterministic decisions, since one �aw
can often be classi�ed in several categories according to the context. To solve this prob-
lem, Landwehr [LBMC94] de�nes three fundamental types of taxonomies for vulnerabilities:
classi�cation by genesis of the vulnerability, by time of introduction, and by location (or
source).

Moreover, vulnerabilities should be considered according to speci�c constraints or as-
sumptions, since there existence most of the time depends on the properties of the envi-
ronment [Krs98]. This assumptions make it necessary to rely on a well de�ned system
model. For generic computing systems, such a model is proposed by the Process/Object
Model [BAT06]. This requirement makes it impossible for generic purpose databases to rely
on speci�c taxonomies. For instance, the Common Vulnerability Enumeration [BCHM99]
project has given up the use of taxonomies. An explicit system model must thus be available
to support vulnerability taxonomies, and therefore the possibility of security automation or
analysis.

Extensive discussions of vulnerability taxonomies can be found in [Krs98], [SH05], [WKP05].
The CWE (Common Weaknesses Enumeration) Project maintains a web page with addi-
tional references, and a graphical representation of each taxonomy17.

In this section, fundamental concepts of vulnerability analysis have been introduced:
de�nitions have been given to provide a �rm basis to work on, and the existing works in
the domain of vulnerability analysis have been presented. This work concerns Vulnerability
properties, which are often presented under the form of a taxonomy, and Vulnerability
Patterns, which gather the information concerning several properties in a formalized way.

Existing Properties and Patterns are not su�cient to describe the vulnerabilities of
an OSGi Platform, for several reason: �rst, they do not take explicitly into account the
presence of a virtual machine; secondly, they are usually targeted at monolithic systems,
whereas OSGi provides a high degree of modularity through the bundles and the dependency
resolution. We therefore �rst need to de�ne the properties of interest for an OSGi-based
System, as well as a suitable Pattern, before the actual vulnerabilities of the platform can
be analyzed.

17http://cwe.mitre.org/about/sources.html

INRIA

OSGi Vulnerabilities 15

3 The Semi-formal Software Vulnerability Pattern

The goal of this study is to identify and to characterize the vulnerabilities of the OSGi
platform, which is introduced in the Appendix A. This characterization is to be done with
a set of speci�c properties, and organized in a semi-formal Vulnerability Pattern. Existing
references are not su�cient to describe the vulnerabilities of the OSGi Platform: neither
virtualization nor componentization, that are provided in the context of OSGi, are taken
into account. Moreover, we want our Vulnerability Pattern to provide us with enough
information to patch them or build suitable security mechanism, which is not the case in
the literature.

The properties of interested that are tracked are taken from existing software security
taxonomies. We add a new entry, the `Consequence Description', that aims at evaluating
the seriousness of the vulnerability. The Pattern is made up of four parts:

� a Reference, for rapid consultation,
� a Description part, for additional and potentially more verbose information,
� an Implementation part, to identify the test conditions of the vulnerability,
� a Protection part, because the objective of identifying the vulnerability is to be able
to patch them.

Our experimental process is the following. First, known �aws that can a�ect Java code
[Blo01, BG05] have been identi�ed, and their impact on an OSGi Platform has been tested.
Secondly, potentially dangerous mechanisms, such as native code execution, have been se-
lected from related projects. The third source of information in our quest for vulnerabilities
of OSGi bundles is the speci�cations of the elements that make up an OSGi platform: the
Java Virtual Machine, and the OSGi platform itself. Several Java API let the code access
to the Virtual Machine itself (e.g. the System or Runtime API), or are known to cause
the execution hang (Threads). The behavior of the OSGi platform in the presence of mal-
formed or malicious bundles is not speci�ed. We therefore review the various entities that
make up this execution environment: the format of the bundle meta-data (Manifest File),
the registration of services, the bundle management and fragment functionalities. For each
potential vulnerability, we implemented a malicious bundle. This makes possible to validate
the hypothesis, and to identify the conditions for each attack. When protections against
these attacks exist, they are validated through experiments. The attack bundles are tested
in the four main Open Source implementations of OSGi, Felix, Knop�er�sh, and Equinox,
and Concierge.

We focus on the behavior of the core of the considered execution environment, which
comprises the JVM and the OSGi platform. We therefore do not consider the management
tools for Java systems, such as JMX, or JVM TI. JMX enables to manage a JVM through
code executed inside it. JVM TI is a C library that makes full control over the JVM possible
through a third party program, which can then access the available threads, provides an
extensive debugging of the platform, and control the JVM state. Secondly, the OSGi bundles
communicate through services they publish inside the framework. According to the type of

RR n° 6231

16 Parrend & Frénot

data they handle, these services can be subject to speci�c vulnerabilities. A list of Service-
Level vulnerabilities is given by the Findbugs reference list18. Lastly, the OSGi speci�cation
de�nes a bunch of standard services (HTTP, device, service wiring, UPnP services, etc.).
We do not consider these services either.

A Vulnerability Pattern is de�ned to normalize the information gathered relative to each
vulnerability (see section 3.1). The taxonomies for each properties of interest are given and
explained in section 3.2. An example is given in section 3.3 to highlight the information
provided by the Vulnerability Pattern.

3.1 The Structure of the Semi-formal Vulnerability Pattern

The characteristics of interest to describe the vulnerabilities of a software system need to be
gathered in a coherent set that contains all the information that is useful to understand and
prevent these vulnerabilities. We therefore de�ne a `Semi-formal Vulnerability Pattern' that
is similar to the `Attack Patterns' [MEL01]. On the opposite of this latter, the Vulnerability
Pattern is centered around the identi�ed vulnerability, so as to make their correction easy.
Existing vulnerability patterns, which are presented in the section 2, can not be reused as-is,
since they provide not enough details for our purpose.

The Vulnerability Pattern is compound of following information. Its formal expression
is given in the Appendix C.

Vulnerability Reference

� Vulnerability Name: The descriptive name of the vulnerability.
� Identi�er: a unique identi�er for each vulnerability. In our catalog, the identi�er
is built out of the catalog identi�er, the abbreviation of the source entity, and the
number ID of the vulnerability in the catalog for the related source entity.

� Origin: The bibliographic reference of the vulnerability.
� Location of Exploit Code: Where the code that performs the attack is located in
the malicious Bundle (see Figure 1).

� Source: the entity in the execution platform that is the source of the vulnerability,
along with the exact �aw or functionality causing it.

� Target: the target of the attack that can be performed through the vulnerability, i.e.
the victim of the attack (see �gure 3).

� Consequence Type: the type of consequence of an attack exploiting this vulnera-
bility (see �gure 4).

� Time of Introduction: the Life Cycle phase where the vulnerability is introduced.
Corrective measures can be taken at this time. Security measures can be taken in
subsequent phases so as to prevent the exploitation of the vulnerability (see �gure 5).

� Time of Exploit: the life-cycle phase where the vulnerability can be exploited (see
�gure 6). This is the last phase where security measures can be undertaken.

18http://�ndbugs.sourceforge.net/bugDescriptions.html, `Malicious Code Vulnerability' category

INRIA

OSGi Vulnerabilities 17

Vulnerability Description

� Description: a description of the attack
� Preconditions: properties if the systems that must be true to make the exploitation
of the vulnerability possible.

� Attack Process: description of the process of exploitation of the vulnerability.
� Consequence Description: more information relative to the consequences of an
attack using this vulnerability.

� See also: other vulnerabilities based on similar attack sources.

Vulnerability Implementation

� Code Reference: the reference of the implementation code (i.e. the name of the
malicious OSGi bundle.)

� Concerned OSGi Pro�le: the OSGi pro�le(s) where this vulnerability exists.
� Date: the date of the creation of the Vulnerability Pattern (for reference)
� Test Coverage: the percentage of the known implementations of the vulnerability
that have been implemented in a test bundle. The identi�ed implementations for the
main attacks are given in the Appendix E.

� Tested on: the OSGi Platform Implementations for which this vulnerability have
been tested.

Protection

� Existing mechanisms: available protections to prevent this vulnerability from being
exploited.

� Life-cycle enforcement point: the life-cycle phase where the protection mechanisms
must be enforced.

� Potential mechanisms: protections that could be developed so as to prevent this
vulnerability from being exploited.

� Attack Prevention: the measures that can be taken to prevent an attack based on
this vulnerability to be ful�lled, even if it is launched.

� Reaction: the correction action that can be taken to recover from a successful attack.

3.2 Vulnerability Taxonomies for OSGi-based Systems

The properties de�ned in the `Vulnerability Reference' section of the semi-formal Vulnera-
bility Pattern take values that are speci�c to the considered system, and that can thus be
identi�ed based on the system's speci�cations. The speci�c values for these properties can
be de�ned as taxonomies.

The goal of these taxonomies is to make the information explanatory, predictive [Krs98],
but also useful [WKP05]. Explanatory, because the vulnerability should be intuitively un-
derstood by the persons who consult the vulnerability catalog we propose, even with little

RR n° 6231

18 Parrend & Frénot

previous knowledge of the OSGi Platform. Predictive, because the potential values of each
characteristic should cover the whole �eld of possible options, or to explain why some are not
concerned. Useful, because the objective of a vulnerability catalog is to highlight the secu-
rity requirements of the platform under study. The conclusions of the analysis is presented
in the section 4.

We now present the taxonomy for each of the properties of interest.
The �rst two properties of interest are the Location of the malicious code and the source

of the vulnerability. The location concerns the place in the attack bundle where the attack
`payload' is located. The source indicates which entity in the execution environment is
responsible for the vulnerability, i.e. for the system behavior that opens the door to the
attack.

Figure 1 shows the potential locations of malicious code inside a malevolent bundle. The
malicious code can be located in the archive structure (such as archive oversize, or a de-
compression bomb), in the manifest (such as duplicate imports, which make the installation
abord), or in the bundle Activator (is this latter is hanging). It can also be located in the
applicative code of the bundle, being native code, Java code, the Java APIs, or the OSGi
API. The malicious code can also be located in fragment, which are speci�c bundle types.

Figure 1: Potential Locations of malicious Code in a Bundle

The actual sources of vulnerabilities match the di�erent Layers that are de�ned by the
OSGi Speci�cation, along with the Bundle Repository client which enables installation from
remote bundles, and various code properties such as Services, the JVM APIs, or the algo-
rithmic properties of the programs. They are shown in Figure 2.

Figure 3 shows the potential targets of attacks against an OSGi Platform. These targets
can be either the whole platform, or speci�c OSGi Elements. Attacks against the whole
Platform can for instance result in complete unavailability if this latter. The victim OSGi
Elements can be the Platform Management Utility, which makes it possible for the user to
control the life-cycle of bundles (the activator can hang), the bundle itself (which can be
started or stopped), Services (which can su�er from cycles) or packages (for instance, static
data that are by default not accessible could be modi�ed through Bundle Fragments).

INRIA

OSGi Vulnerabilities 19

Figure 2: Vulnerability Sources in an OSGi-based System

Figure 3: Potential Targets of Attacks against an OSGi Platform

Figure 4 shows the potential consequences of an attack against an OSGi Platform. Three
types of consequences are identi�ed: Unavailability, Performance Breakdown, and Undue
Access. Unavailability can be cause by stopping the platform; Performance Breakdown can
be the result of an in�nite loop; and Undue Access can be performed through Fragments or
through Re�ection over Services.

Figure 5 shows the actual introduction time of the vulnerabilities. The introduction time
can be as early as the design and implementation of the platform (when the �aw originates in
the platform), or be the development time, the generation of the Meta-data of the bundles,
the digital signature of the bundle, the installation, or even the publication and resolution
of services.

The taxonomy for Time of Exploit of the vulnerability is represented in �gure 6. This
time of exploit concerns necessarily the Life-Cycle steps inside the execution platform. They
can therefore be: the download, installation, Bundle start (if the vulnerability is present

RR n° 6231

20 Parrend & Frénot

Figure 4: Consequences of the Vulnerabilities of the OSGi Platform

Figure 5: Introduction Time for the identi�ed �aws

in the bundle activator) or execution time (either through service call, or through use of
exported packages).

Figure 6: Exploit Time for the identi�ed Flaws

The existing protections against attacks based on the identi�ed vulnerability are the
following:

� Java Permissions,
� OSGi Permissions (in particular AdminPermission),
� SFelix implementation of the Bundle Digital Signature Validation.

Only runtime execution permissions, either at the JVM level or at the OSGi Platform
level, are currently available to protect an OSGi Platform from hackers. We propose our

INRIA

OSGi Vulnerabilities 21

own implementation of the OSGi Bundle Digital Signature validation process, which is part
of the OSGi Security Layer.

The properties of interest that characterize a vulnerability have been presented. Next
paragraph gives the full Vulnerability Pattern that is based on these properties, and adapted
for better comprehension.

3.3 A Vulnerability Example: `Management Utility Freezing - In-
�nite Loop'

So as to highlight the role of the de�ned Vulnerability Pattern, we now present an example
of vulnerability; the `Management Utility Freezing - In�nite Loop' vulnerability. The whole
vulnerability catalog is given in the Appendix D. This vulnerability consists in the presence
of an in�nite Loop in the activator of a given Bundle, which causes the platform management
tool (often an OSGi shell) to freeze. The presence of in�nite loops as a vulnerability is given
by Blooch is `Java Puzzlers - Traps, Pitfalls and Corner Cases', puzzlers 26 to 33 [BG05].
The matching Pattern is �rst given, and then explained.

The Vulnerability Pattern

Vulnerability Reference

� Vulnerability Name: Management Utility Freezing - In�nite Loop
� Extends: In�nite Loop in Method Call
� Identi�er: Mb.osgi.4
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Activator
� Source: OSGi Platform - Life-Cycle Layer (No safe Bundle Start)
� Target: OSGi Element - Platform Management Utility
� Consequence Type: Performance Breakdown; Unavailability
� Introduction Time: Development
� Exploit Time: Bundle Start

Vulnerability Description

� Description: An in�nite loop is executed in the Bundle Activator
� Preconditions: -
� Attack Process: An in�nite loop is executed in the Bundle Activator
� Consequence Description: Block the OSGi Management entity (the felix, equinox
or knop�er�sh shell; when launched in the KF graphical interface, the shell remain
available but the GUI is frozen). Because of the in�nite loop, most CPU resource is
consumed

� See Also: CPU Load Injection, In�nite Loop in Method Call, Stand Alone In�nite
Loop, Hanging Thread

RR n° 6231

22 Parrend & Frénot

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Code static Analysis ; Resource Control and Isolation -
CPU ; OSGi Platform Modi�cation - Bundle Startup Process (launch the bundle ac-
tivator in a separate thread to prevent startup hanging)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.in�niteloopinmethodcall-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-24
� Test Coverage: 10%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge
� Known Robust Platforms: SFelix

Details of the Vulnerability Pattern The `Management Utility Freezing - In�nite
Loop' is referenced under the identi�er `mb.osgi.4', which means `malicious bundle cata-
log - originates in the OSGi Platform itself - number 4. This vulnerability is an extension
of the `In�nite Loop in Method Call' one. It has been identi�ed in the frame of the research
project `Malicious Bundles' of the INRIA Ares Team.

The location of the malicious code that performs the attack is the Bundle Activator.
Its source is the Life-Cycle Layer of the OSGi Platform, which is not robust against such a
vulnerability. Its target is the Platform Management Utility, which can be either the OSGi
shell or a graphical interface such as the Knop�er�sh GUI. This vulnerability has a two-fold
consequence: the method does not return, so that the caller also freezes; and the in�nite
loop consumes most of the available CPU, which causes the existing services to su�er from
a serious performance breakdown.

This vulnerability is introduced during development, and exploited at bundle start time.
Related Vulnerability Patterns are `Management Utility Freezing - Hanging Thread', that

also targets the Management Utility, `In�nite Loop in Method Call', `CPU Load Injection',
`Stand-alone In�nite Loop' that have the same consequence of performance breakdown, and
the `Hanging Thread', that also freezes the calling thread.

No speci�c protection currently exists. Two potential solutions have been identi�ed. The
�rst consists in launching every Bundle Activator in a new Thread, so as not to block the
caller if the activator hangs. The second solution would enable to prevent invalid algorithms
to be executed: static code analysis techniques such as Proof Carrying Code or similar
approaches [Nec97] can provide formal proves of code wellformedness.

Its reference implementation is available in the OSGi bundle named `fr.inria.ares.in�nite-
loopinmethodcall-0.1.jar', referenced the 2006-08-24. The test coverage is 10 %, since ten

INRIA

OSGi Vulnerabilities 23

types of in�nite loops have been identi�ed (see the appendix E), and only one has been im-
plemented. The test bundle have been tested on the following implementations of the OSGi
platform: Felix, Equinox, Knop�er�sh, and Concierge. The only robust Platform is our
SFelix Platform, which is a prototype meant to enhance the current Felix implementation.

This example highlights the informations that can be found in each Vulnerability Pat-
terns. The information related to the other vulnerabilities is given under the form of pat-
terns, to provide a quick overview of the characteristics, and to make analysis possible. The
catalog of the vulnerability patterns is presented in the section D. The section 4 presents
the analysis of this catalog, and the security requirements that can be deduced from it.

RR n° 6231

24 Parrend & Frénot

4 Requirements for secure OSGi Systems

The analysis of the Vulnerability Patterns we present in the catalog provides guidelines
for programming secure OSGi-based systems. The objective here is twofold. First, the
weaknesses of the OSGi Platform are to be identi�ed, so as to provide a framework for the
evolution of its implementations. Secondly, recommendations for a the implementations of
a Hardened OSGi Platform are given

These guidelines are - of course - based on the Vulnerability Catalog (appendix D) at the
moment of its publication, and can therefore evolve in the future, when new vulnerabilities
will be discovered, or when new part of OSGi systems will be considered. Actually, the
management tools such as JVMTI, and the OSGi standard services are not taken into
account.

This section is organized as follows. Subsection 4.1 presents the analysis of the catalog
through statistics related to the signi�cant properties of the vulnerabilities. Subsection 4.2
presents the Security Requirements for a hardened OSGi Platform. Lastly, Subsection 4.3
gives a series of recommendations for more robust implementations of the OSGi Platform.

4.1 Catalog Analysis

The analysis of the identi�ed Vulnerability Patterns provides both qualitative and quan-
titative data relative to these vulnerabilities. This subsection provides a summary of the
signi�cant properties that characterize a vulnerability in an OSGi execution environment.
First, comparisons with reference vulnerability classi�cations are given. Then, some statis-
tics relative to OSGi speci�c vulnerabilities are given based on the Vulnerability Catalog.

Analysis frameworks for software vulnerabilities are based on two main properties: in-
trusion techniques, and intrusion results.

Intrusion techniques are not directly considered in the catalog, because this latter deals
with obvious weaknesses of current OSGi platform implementations rather than with com-
plex attacks, and because such techniques are ill-suited to provide unique vulnerability
identi�cation and potential solutions. Nevertheless, they are broadly used, and let easily
understand the actual risks that vulnerabilities cause to the target system. An extensive
list of intrusion techniques is given by Neumann and Parker[NP89]:

� NP1: External misuse (nontechnological),
� NP2: Hardware misuse,
� NP3: Masquerading (impersonation, playback attacks),
� NP4: Setting up subsequent misuse,
� NP5: Bypassing intended control,
� NP6: Active misuse of resources (write or execution access to the system or resource
(CPU, memory, disk space) consumption),

� NP7: Passive misuse of resources (resource consumption through read-only access by
the bundle or through read access to the bundle by the framework of another bundle),

� NP8: Misuse resulting from inaction,

INRIA

OSGi Vulnerabilities 25

� NP9: Use as indirect aid in committing other misuse.

The type of OSGi Vulnerabilities according to Neumann and Parker's classi�cation is
given in Figure 7. Since this study is restricted to the OSGi Platform itself, without its
environment and not considering executed applications, topics NP4 to NP8 only are rele-
vant. The most common attacks can be conducted through Active Misuse of Resources (23
occurrences). An exemple thereof is the `Recursive Thread Creation', which consumes the
memory of the JVM until exhaustion and subsequent crash. A second set of attacks can be
conducted either through Passive Misuse of Resources (4 occurrences - for instance, `Code
Observer', which read the content of components it has access to), or through Misuse result-
ing from Inaction (7 occurrences - for instance, a hanging thread, which prevents a method
from returning). Some attacks also allow Setting up Subsequent Misuse (3 occurrences - e.g.
`Llaunch a hidden Bundle'), and Bypassing Intended Control (1 occurrence, `Invalid Digital
Signature Validation').

Figure 7: Type of OSGi Vulnerabilities according to Neumann and Parker's classi�cation

The second common approach to characterizing vulnerabilities is through the results
of the intrusion. This is what we call here `Attack Consequence`. Lindqvist provides an
authoritative taxonomy of intrusion results, which main types can be:

� Denial of service,
� Exposure (or Trojan Horse),
� Erroneous Output.

As shown in the Table 1, these categories can directly be mapped to the Attack Con-
sequences that we de�ne: Denial of Service matches both Unavailability and Performance
Breakdown, and Exposure and Erroneous Output match Undue Access. The latter matching
is due to the fact that code-level access (e.g. to a method) allows both reading and writing
- as opposed to �le systems.

RR n° 6231

26 Parrend & Frénot

Vulnerability Denial of Service Exposure Erronneous Output
(Troyan Horse)

Value in `Consequences` Unavailability, Undue Undue
taxonomy Performance Breakdown Access Access
Invalid Digital Signature Valida-
tion

- - X

Big Component Installer X - -
Decompression Bomb X - -
Duplicate Package Import X - -
Excessive Size of Manifest File X - -
Erroneous values of Manifest at-
tributes

X - -

Management Utility Freezing - In-
�nite Loop

X - -

Management Utility Freezing -
Thread Hanging

X - -

Runtime.exec.kill X - -
CPU Load Injection X - -
System.exit X - -
Runtime.halt X - -
Recursive Thread Creation X - -
Hanging Thread X - -
Sleeping Bundle X - -
Big File Creator X - -
Code Observer - X -
Component Data Modi�er - X X
Hidden Method Launcher - X X
Memory Load Injection X - -
Stand Alone In�nite Loop X - -
In�nite Loop in Method Call X - -
Exponential Object Creation X - -
Launch a Hidden Bundle - X X
Pirat Bundle Manager - X X
Zombie Data X - -
Cycle Between Services X - -
Numerous Service Registration X - -
Freezing Numerous Service Regis-
tration

X - -

Execute Hidden Classes - X X
Fragment Substitution - X X
Access Protected Package through
split Packages

- X X

Total 23 8 8

Table 1: Classi�cation of OSGi Vulnerabilities according to Lindquist's[LJ97] Intrusion Re-
sults INRIA

OSGi Vulnerabilities 27

Most of the identi�ed vulnerabilities lead to Denial of Service Attacks (23 occurrences).
Exposure and Erroneous Output account each for 8 occurrences.

A detailed analysis of each vulnerability property is now presented. For all taxonomies
of interest that are referenced in the Semi-Formal Vulnerability Pattern, we give the number
of OSGi vulnerabilities - on the ordinate - that is concerned with each potential value it
can take - on the abscissa. The graphs are automatically generated using an extension
of the XML2Tex Documentation Generator (see appendix F), that extract the data from
the XML Vulnerability Pattern �les, builds a Gnuplot compliant data sheet, and generate
the graphics. Analyzed properties are the following: source entity of the vulnerabilities,
functions and �aws that can be exploited, target of attacks based on these vulnerabilities.

Figure 8 shows the source entity of the identi�ed vulnerabilities. The most important
source is the Java API, which causes the bigger part of the vulnerabilities. Next, the
Application Code properties, the OSGi Life-Cycle Layer and the OSGi Module Layer also
generate an important number of vulnerabilities. Next comes the Java Runtime API, which
is particularly sensitive, and the OSGi Service Layer. The Operating System and the Bundle
Repository Client must also be considered as potential source of vulnerabilities, even though
their impact is more marginal.

Figure 8: Entities that are Source of the vulnerabilities

Figure 9 shows the cardinality of the identi�ed dangerous functions. First come the
OSGi Bundle Facility, and the Java APIs Re�ection, ClassLoader, and Thread. Next, the
bundle management, the Java File API and the opportunity of executing native code open
the way to abuses. Several other functions prove to be dangerous: the Runtime.halt() and
the System.exit() methods, the lack of control on method parameters, and the kill utility at
the OS level which can be used to shut the platform down.

RR n° 6231

28 Parrend & Frénot

Figure 9: Functions that prove to be dangerous in the context of an OSGi Platform

Figure 10 shows the cardinality of the �aws of a Java-based execution environment with
the OSGi Platform. The most important �aw is the lack of algorithms safety in the Java
language. Next come several properties of the OSGi platforms, such as the lack of safe-default
bundle meta-data handling during the dependency resolution phase, the lack of control on
the service registration process, and the lack of robustness of the bundle start mechanism,
which heavily relies on the validity of the bundle activators. Several other punctual �aws
have been identi�ed: data of uninstalled bundles is often kept on the disk space, being not
accessible, no dependency control is performed at the service level, the process of Digital
Signature validation is sometimes not compliant with the OSGi R4 Speci�cations, and the
bundle archive is never checked for size or validity, which provides no protection against
decompression bombs or large �les, in particular in resource-constraint environments.

Figure 11 shows the target of attacks against an OSGi execution environment. The
entity that is the �rst target of the identi�ed attacks is the platform. This means that most
of the identi�ed attack can easily prevent all services on the platform the be executed in
a satisfactorily manner. OSGi speci�c elements, such as packages, Bundles or services are
other frequent targets. Lastly, the Platform Management Utility can also be targeted, which
would not prevent the platform to provide existing services, but would prevent any evolution
of these services - as well as the removal of the malicious bundle.

The table 2 shows a summary of the properties of the OSGi Platform implementa-
tions under study. The considered platforms are the main Open Source Projects: Felix19,

19http://cwiki.apache.org/FELIX/index.html

INRIA

OSGi Vulnerabilities 29

Figure 10: Flaws in an OSGi Execution Environment

Figure 11: Targets of Attacks against an OSGi Execution environment

RR n° 6231

30 Parrend & Frénot

Knop�er�sh20, Eclipse Equinox21, and Concierge22. For comparison, we also provide the
data related to Hardened Felix, which is the Hardened OSGi Platform we develop. It is
based on the Felix Platform 0.8.0.

Most Open Source OSGi Platforms are very fragile regarding the set of vulnerability we
identi�ed. Equinox proves to have slightly better results than the other ones. Hardened Felix
currently does not intend to provide protections against all the identi�ed vulnerabilities, but
only to provide a �rst enhancement of current implementations.

The result of our analysis have been presented for the properties that characterize vulner-
abilities of an OSGi Platform: Location of the malicious payload in Bundles, Vulnerability
Source, Flaws and dangerous Functions, as well as the identi�ed Attack Targets... It is now
possible to identify the requirement for a Hardened OSGi Platform.

4.2 Requirements for a Hardened OSGi Platform

The requirement for a Hardened OSGi Platform can be deduced from the actual and poten-
tial security mechanisms. The objective is to highlight the security mechanisms that need to
be better exploited (for the existing ones), and the ones that need to be developed (for the
potential ones). Priorities can be set according to the type of target and consequences of the
attacks: it is in any case worth preventing an attack that makes the whole platform unavail-
able, but it may be less important to prevent attacks that provoke only the unavailability
of the malicious bundle itself.

Figure 12 shows the cardinality of the actual protection mechanisms. Most of the vul-
nerabilities can be prevented by Java Permissions. However, an important number of them
currently have no associated protections. The OSGi Admin Permission and the Hardened
Felix implementation of the OSGi Security Layer (Digital Signature Validation part) account
each for one vulnerability.

The Figure 13 shows the potential protections identi�ed to protect an OSGi Platform
against the considered attacks. These potential protections are of course only set as hypothe-
ses: as long as no implementation is available, it is not possible to assert that no special
case or hard-to-track false positives and negatives dot not occur if the propose technique
is used. The most promising approach seems to be static code analysis, that would help
track both dangerous calls without heavyweight permissions and unsafe algorithms. The
OSGi Platform itself would take bene�t of several minor modi�cations: better handling of
ill-formed meta-data, safe startup process for bundles, better control of service publication.
Some of these mechanisms have been experienced in the Hardened Felix Platform, and prove
to be easy to implement. Also, resource control and isolation mechanisms (CPU, Memory,
disk space) would make the support of multi-processes safer.

The potential protection mechanisms represent the elements that are worth an impor-
tant development e�ort. However, they do not show the relative priority of the security

20http://www.knop�er�sh.org/
21http://www.eclipse.org/equinox/
22http://concierge.sourceforge.net/

INRIA

OSGi Vulnerabilities 31

Vulnerability Felix Knop�er�sh Equinox Concierge SFelix Any with
Java Per-
missions

Invalid Digital Signature Valida-
tion

V - - - R -

Big Component Installer - - - - R -
Decompression Bomb - - - - - -
Duplicate Package Import V V R R R -
Excessive Size of Manifest File V V R V R -
Erroneous values of Manifest at-
tributes

V V V V V -

Management Utility Freezing - In-
�nite Loop

V V V V R -

Management Utility Freezing -
Thread Hanging

V V V V R -

Runtime.exec.kill V V V V V R
CPU Load Injection V V V V V R
System.exit V V V V V R
Runtime.halt V V V V V R
Recursive Thread Creation V V V V V -
Hanging Thread V V V V V -
Sleeping Bundle V V V V V -
Big File Creator V V V V V R
Code Observer V V V - V R
Component Data Modi�er V V V V V R
Hidden Method Launcher V V V V V R
Memory Load Injection V V V V V -
Stand Alone In�nite Loop V V V V V -
In�nite Loop in Method Call V V V V V -
Exponential Object Creation V V V V V -
Launch a Hidden Bundle V V V V V R
Pirat Bundle Manager V V V V V R
Zombie Data V R R V R -
Cycle Between Services V V V V V -
Numerous Service Registration V V V V R -
Freezing Numerous Service Regis-
tration

- - - V - -

Execute Hidden Classes V V V - V R
Fragment Substitution V V V - V R
Access Protected Package through
split Packages

V V V - V R

V: Platform is Vulnerable; R: Platform is Robust; - : not relevant

Table 2: Vulnerabilities for the main Open Source OSGi Platforms

RR n° 6231

32 Parrend & Frénot

Figure 12: Actual Protection Mechanisms

Figure 13: Cardinality for each potential Security Mechanisms for the OSGi platform

mechanisms. Urgent security mechanisms are the ones that prevent attacks with serious
consequences - for instance platform unavailability - to be performed, or the ones that are

INRIA

OSGi Vulnerabilities 33

required to make the use of existing mechanisms e�cient and convenient for developers.
Consequently, the priority is to be set on following protection mechanisms:

� Protections of Attacks targeted at the whole Platform (see Figure 11), and that impair
the availability or the performance of all executed bundles simultaneously,

� Protections against silent attacks: classical access control mechanisms are required
inside the OSGi Platform, to support mutually untrustful bundles,

� tools are required to take advantages of existing mechanisms: for instance, Permissions
are supported, but currently extremely unconvenient to set and manage.

We presented the requirement for developing a Hardened OSGi Platform by identifying
the best promising potential security mechanisms as well as the most urgent tools for pre-
venting serious attacks, or taking advantage of existing protections. However, developers
require ready-to-use guidelines to take advantage of the knowledge we gathered in these
study: in the absence of available tools, they have to take care by themselves that the code
they produce is safe from the known vulnerabilities.

4.3 Recommendations for a Hardened Execution Environment

Hardening the OSGi Platform Based on the identi�ed vulnerability of the OSGi Plat-
form, we propose following recommendation for an enhanced OSGi Platform. These rec-
ommendations do not pretend to solve every identi�ed problems, but intend to make the
community aware of the easy changes that can be made to existing implementations of the
OSGi Platform so as to prevent avoidable �aws.

These recommendations are validated by the Platform Hardened Felix, which is a robust
extension to the Felix 0.8.0 implementation of the OSGi Platform.

Following improvement to the implementations of OSGi Release 4 compliant Platforms
should be made:

� Bundle Installation Process: a maximum storage size for bundle archives is set.
Alternatively, a maximum storage size for all data stored on the local disk is set
(Bundle Archives and �les created by the bundles); OSGi R4 par. 4.3.3.

� Bundle Uninstallation Process: remove the data on the local bundle �lesystem
when a bundle is uninstalled (and not when the platform is stopped); OSGi R4 par.
4.3.8.

� Bundle Signature Validation Process: the digital signature must be checked at
installed time. It must not rely on the Java built-in validation mechanism, since this
latter is not compliant with the OSGi R4 Speci�cations [PF07]; OSGi R4, Paragraph
2.3.

� Bundle Dependency Resolution Process: do not reject duplicate imports. just
ignore them; OSGi R4 par. 3.5.4.

� Bundle Start Process: launch the Bundle Activator in a separate thread; OSGi R4
par. 4.3.5.

RR n° 6231

34 Parrend & Frénot

� OSGi Service Registration: set a Platform Property that explicitly limits the
number of registered services (default could be 50); OSGi R4 par. 5.2.3.

� Bundle Download: when a bundle download facility is available, the total size of
the bundles to install should be checked immediately after the dependency resolution
process. The bundles should be installed only if the required storage is available.

To support this modi�cations of the OSGi platform implementations, following changes
have been applied to the API:

� In the Class BundleContext, a method `getAvailableStorage()' is de�ned,

� A property `osgi.storage.max' is de�ned, that is set in the property con�guration �le
of the OSGi framework.

� In the class org.osgi.service.obr.Resource, a method `getSize()' is de�ned. This method
relies on the `size' entry of the bundle meta-data representation (usually a XML �le).

In addition to these simple enhancements, more research work is required in order to
de�ne proper solutions to solve the identi�ed vulnerabilities. The most important ones are
the following:

� Static Code Analysis for Java,
� Convenient Permission Management for Java and OSGi,
� Resource isolation in component systems,
� Mandatory Service Management.

Through this study, we identi�ed both technical requirements for enhancing of the OSGi
R4 compliant Platforms, and necessary research work that is necessary to protect the OSGi
Platform.

Hardening the Java Virtual Machines Some safety requirements have also been iden-
ti�ed at the Virtual Machine Level.

The �aws that have been identi�ed in the Sun Java Virtual Machine version 1.6 are the
following:

� the Java Permission `exitVM' appears not to be e�ective,

� the presence of a manifest with a huge size in a loaded Jar �le introduces a dramatic
slowdown of the JVM when the archive Manifest is extracted. Our implementation
shows that a simple patch can correct this matter.

A �aw has also been identi�ed in the Gnu Classpath, which is an open source implemen-
tation of the Java classes. Gnu Classpath is used in conjunction with the JamVM Virtual
Machine and targets resource-limited devices:

INRIA

OSGi Vulnerabilities 35

� the presence of a manifest with a huge size in a loaded Jar �le introduces a dramatic
slowdown of the JVM when the corresponding JarFile Object is created, even though
the Manifest stays unused.

Requirements for programming secure OSGi Systems have been identi�ed. A hardened
version of the OSGi Platform is needed to prevent most of the identi�ed vulnerabilities to be
exploited. However, since such a platform will take time to develop and validate, a pragmatic
approach is to be taken. Therefore, tools should be developed to ease the management of
current security mechanisms such as Java Permissions, which are currently not adapted to
dynamic systems.

RR n° 6231

36 Parrend & Frénot

5 Conclusions

The objective of our study is to improve the dependability level of the OSGi platform, as
well as the knowledge that is available relative to the vulnerabilities of the OSGi Platform.
This improvement is achieved through four complementary contributions. First, we de�ne
a method for analyzing the security status of software systems, based on a speci�c Software
Vulnerability Pattern. Secondly, we provide a vulnerability catalog that identi�ed a set of
vulnerabilities, and the key properties for understanding - and preventing - them. Thirdly,
we developed a hardened OSGi Platform, Hardend Felix23, that provides proof of concept
protection mechanisms. And we issue a set of recommendations for the OSGi Speci�cations
that integrate these protection mechanisms.

Our study is centered on the OSGi Core speci�cation, and does not take into account
several mechanisms that are - or can be - often used together with OSGi platforms. In
particular, neither management facilities nor OSGi standard services have been taken into
account, and service engineering questions have been neglected. These three elements will
require further work, and will likely enrich our vulnerability catalog.

A side-e�ect achievement of our study is to precisely identify the requirements in term
of research and development, so as to provide OSGi platform that are actually robust,
and not just partially hardened. Static Code analysis seem to be very promising, but su�ers
from signi�cant theoretical limitation, especially in the world of Object-Oriented Languages.
Convenient permission management, and proper resource isolation in Java multi-application
systems are also a strong need on the road toward OSGi security.

The present study provides a pragmatic approach to software security concerns, targeted
at the world of OSGi Platforms. It present an important step toward a better understanding
of OSGi-related security, and help practitioners implement safer system by providing a
hardened OSGi prototype, SFelix v0.2. An important research e�ort is still required to
provide an OSGi platform which security mechanisms can be said to be complete.

23http://sfelix.gforge.inria.fr/

INRIA

OSGi Vulnerabilities 37

References

[ACD+75] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford, S. Tokubo, and
D. A. Webb. Security analysis and enhancements of computer operating systems.
Technical report, NATIONAL BUREAU OF STANDARDS WASHINGTONDC
INST FOR COMPUTER SCIENCES AND TECHNOLOGY, December 1975.

[AJB00] A.Avizienis, J.C.Laprie, and B.Randell. Fundamental concepts of dependability.
Technical Report No00493, LAAS (Toulouse, France), 2000. 3rd Information Sur-
vivability Workshop (ISW'2000), Boston (USA), 24-26 Octobre 2000, pp.7-12.

[Ale77] Christopher Alexander. A Pattern Language. Oxford University Press, 1977.

[BAT06] Anil Bazaz, James D. Arthur, and Joseph G. Tront. Modeling security vulnera-
bilities: A constraints and assumptions perspective. In 2nd IEEE International
Symposium on Dependable, Autonomic and Secure Computing (DASC'06), 2006.

[BCHM99] David W. Baker, Steven M. Christey, William H. Hill, and David E. Mann. The
development of a common enumeration of vulnerabilities and exposures. In Second
International Workshop on Recent Advances in Intrusion Detection, 1999.

[BG05] Joshua Bloch and Neal Gafter. Java Puzzlers - Traps, Pitfalls and Corner Cases.
Pearson Education, June 2005.

[BH78] Richard Bisbey and Dennis Hollingworth. Protection analysis: Final report. Tech-
nical Report ARPA ORDER NO. 2223, ISI/SR-78-13, Information Sciences Insti-
tute, University of Southern California, May 1978.

[Blo01] Joshua Bloch. E�ective Java Programming Language Guide. Addison-Wesley Pro-
fessional, 2001.

[Chr05] Steve Christey. The preliminary list of vulnerability examples for researchers
(plover). In NIST Workshop De�ning the State of the Art of Software Security
Tools, Gaithersburg, MD, August 2005.

[Chr06] Steven M. Christey. Open letter on the interpretation of "vulnerability statistics".
Bugtraq, Full-Disclosure Mailing list, January 2006.

[CO05] D. Crocker and P. Overell. Augmented bnf for syntax speci�cations: Abnf. IETF
RfC 4234, October 2005.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series. Addison Wesley Professional., 1994.

[GW05] Michael Gegick and Laurie Williams. Matching attack patterns to security vulnera-
bilities in software-intensive system designs. ACM SIGSOFT Software Engineering
Notes, 30(4), July 2005.

RR n° 6231

38 Parrend & Frénot

[HL98] John D. Howard and Thomas A. Longsta�. A common language for computer
security incidents. Technical Report SAND98-8667, Sandia National Laboratories,
USA, October 1998.

[HLV05] Michael Howard, David LeBlanc, and John Viega. 19 Deadly Sins of Software
Security. McGraw-Hill Osborne Media, July 2005.

[Krs98] Ivan Victor Krsul. SOFTWARE VULNERABILITY ANALYSIS. PhD thesis,
Purdue University, May 1998.

[LBMC94] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. A
taxonomy of computer program security �aws, with examples. In ACM Computing
Surveys, volume 26, pages 211�254, September 1994.

[LJ97] Ulf Lindqvist and Erland Jonsson. How to systematically classify computer security
intrusions. In IEEE Symposium on Security and Privacy, pages 154�163, May 1997.

[McG06] Gary McGraw. Software Security - Building Security In. Pearson Education,
January 2006.

[MCJ05] Robert A. Martin, Steven M. Christey, and Joe Jarzombek. The case for common
�aw enumeration. In NIST Workshop on "Software Security Assurance Tools,
Techniques, and Methods", Long Beach, CA., USA, November 2005.

[MEL01] Andrew P. Moore, Robert J. Ellison, and Richard C. Linger. Attack modeling for
information security and survivability. Technical Report CMU/SEI-2001-TN-001,
CMU/SEI, March 2001.

[MM97] Thomas J. Mowbray and Raphael C. Malveau. Corba Design Patterns. John Wiley
& Sons, January 1997.

[Nec97] George C. Necula. Proof-carrying code. In Conference Record of POPL '97: The
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 106�119, Paris, France, jan 1997.

[NP89] P. G. Neumann and D. B. Parker. A summary of computer misuse techniques.
In Proceedings of the 12th National Computer Security Coifererice, page 3961107,
Baltimore, Maryland, USA, October 1989.

[OSG05] OSGI Alliance. Osgi service platform, core speci�cation release 4. Draft, 07 2005.

[PF06] Pierre Parrend and Stephane Frenot. Secure component deployment in the osgi(tm)
release 4 platform. Technical Report RT-0323, INRIA, June 2006.

[PF07] Pierre Parrend and Stephane Frenot. Supporting the secure deployment of osgi
bundles. In First IEEE WoWMoM Workshop on Adaptive and DependAble
Mission- and BUsiness-critical mobile Systems, Helsinki, Finland, June 2007.

INRIA

OSGi Vulnerabilities 39

[Sch03] Markus Schumacher. Security Engineering with Patterns. Springer Verlag, 2003.
LNCS n 2754.

[SH05] Robert C. Seacord and Allen Householder. A structured approach to classifying se-
curity vulnerabilities. Technical Report CMU/SEI-2005-TN-003, Carnegie Mellon
University - Software Engineering Institute, January 2005.

[SS73] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in
computer systems. In Fourth ACM Symposium on Operating System Principles,
October 1973.

[Sun03] Sun Microsystems, Inc. Jar �le speci�cation. Sun Java Speci�cations, 2003.

[TCM05] Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious kingdoms:
A taxonomy of software security errors. IEEE Security & Privacy, 3(6):81�84,
November/December 2005.

[WKP05] Sam Weber, Paul A. Karger, and Amit Paradkar. A software �aw taxonomy:
Aiming tools at security. In Software Engineering at Secure Systems - Building
Trustworthy Applications, June 2005.

RR n° 6231

40 Parrend & Frénot

A The OSGi platform

The OSGi Platform24 [OSG05] is a componentization layer to the Java Virtual Machine. It
supports the runtime extension of Java-based application through a modular approach: the
applications are parted into `bundles', that can be loaded, installed and managed indepen-
dently from each other.

In this section, we present �rst an overview of the OSGi Platform, then the core concept
of OSGi: the bundles and their Life Cycle, and the possible interactions between bundles.

A.1 Overview

The OSGi Platform has been developed so as to support extensible Java-based systems in
resource-constraint systems, such as automotive and mobile environments. It has since then
spread into the world of Integrated Development Applications (in particular with Eclipse),
and into applicative servers (IBM Websphere 6.1, Harmony, Cocoon, Directory...).

It runs as an overlay to the Java Virtual Machine (JVM). The �gure 14 shows the
overview of an OSGi-based system, with the Operating System (OS), the JVM, the platform
itself, and the bundles it contains.

Figure 14: Overview of an OSGi Platform

Three main concepts sustain the OSGi platform: the platform, the bundle, and the
interoperability between the bundles. The Platform manages the applications. The bundles
are the unit of deployment and execution. The interoperability between the bundles is
achieved at the class level (access to packages from other bundles) and at the service level
(access to services registered by other bundles).

A.2 The Bundles

An OSGi bundle is a Jar �le [Sun03] which is enhanced by speci�c meta-data. The typi-
cal structure of a bundle is shown in the �gure 15. The META-INF/MANIFEST.MF �le
contains the necessary OSGi meta-data: the bundle reference name (the `symbolic name'),
its version, the dependencies and the provided resources. Some packages are exported, i.e.

24http://www.osgi.org/

INRIA

OSGi Vulnerabilities 41

accessible from other bundles inside the platform. The activator is used by the platform as
an initial bootstrap when the bundle is started. Packages can be exported. Services can be
registered, so as to be available for other bundles.

Figure 15: Intern Structure of an OSGi bundle

Each bundle has a restricted view on the OSGi platform: the OSGi Context, which is
transmitted to the bundle activator at start time. This context reference is needed to publish
and look-up for services. It also supports the access to the management functionalities of
the platform.

The OSGi bundles can also access the Operating System of the machine it is running on
through native libraries. This possibility is not speci�c to the OSGi environment, since it
relies on the Java Runtime API, but it allows the bundles to break their isolation.

The Life Cycle of a bundle inside the OSGi Platform is de�ned as follows. The bundle
must �rst be installed. When it is required to start, the package-level dependencies with
other bundles are resolved. When all dependencies are resolved, the bundle activator is
launched: the start() method is called, and the related code is executed. Typically, these
operations consist in con�guration and publication of services. The bundle is then in the
`started' state. Updating, stopping and uninstalling build the last possible operations for
bundle management The �gure 16 shows the Life Cycle of a bundle inside a OSGi Platform.

A.3 Interactions between Bundles

The interactions between the bundles are done through two complementary mechanisms:
the package export/import and the service registration lookup facility. These mechanisms
are shown in the �gure 17.

The publication and lookup of services are performed through the BundleContext refer-
ence that each bundle receives ar startup time. During the publication process, the adver-
tising bundles registers a service by publishing a Java interface it is implementing, and by
providing a class implementing this interface. The lookup is performed by the client bundle,
which gets the service from the BundleContext and uses it as a standard Java object.

RR n° 6231

42 Parrend & Frénot

Figure 16: Life Cycle of an OSGi Bundles inside the platform

Figure 17: Interaction Mechanisms between the OSGi Bundles

B Vulnerabilities List

The most common Vulnerability Lists presented in the section 2.2 are given here.

B.1 The Lindqvist Classi�cation

The computer security intrusions identi�ed by Lindqvist [LJ97] are the following:

� external misuse (not technical),
� hardware misuse,
� masquerading,
� setting up subsequent misuse,
� bypassing intended controls,

INRIA

OSGi Vulnerabilities 43

� active misuse of resource,
� passive misuse of resource,
� misuse resulting from inaction,
� use of an indirect aid in committing other misuse.

B.2 Common Weaknesses Enumeration (CWE)

The categories de�ned in the Common Weaknesses Enumeration [MCJ05] are the following:

� Bu�er over�ows, format strings, etc. [BUFF];
� Structure and Validity Problems;[SVM];
� Special Elements [SPEC];
� Common Special Element Manipulations[SPECM];
� Technology-Speci�c Special Elements[SPECTS];
� Pathname Traversal and Equivalence Errors [PATH];
� Channel and Path Errors [CP];
� Information Management Errors [INFO];
� Race Conditions [RACE];
� Permissions, Privileges, and ACLs [PPA];
� Handler Errors [HAND];
� User Interface Errors [UI];
� Interaction Errors [INT];
� Initialization and Cleanup Errors [INIT];
� Resource Management Errors [RES];
� Numeric Errors [NUM];
� Authentication Error [AUTHENT];
� Cryptographic errors [CRYPTO];
� Randomness and Predictability [RAND];
� Code Evaluation and Injection [CODE];
� Error Conditions, Return Values, Status Codes [ERS];
� Insu�cient Veri�cation of Data [VER];
� Modi�cation of Assumed-Immutable Data [MAID];
� Product-Embedded Malicious Code [MAL];
� Common Attack Mitigation Failures [ATTMIT];
� Containment errors (container errors) [CONT];
� Miscellaneous WIFFs [MISC].

B.3 Nineteen Dealy Sins

The 19 Deadly Sins de�ned by Howard [HLV05] are the following:

� bu�er over�ows,
� command injection,

RR n° 6231

44 Parrend & Frénot

� Cross-site scripting (XSS),
� format string problems,
� integer range error,
� SQL injection,
� trusting network address information,
� failing to protect network tra�c,
� failing to store and protect data,
� failing to use cryptographically strong random numbers,
� improper �le access,
� improper use of SSL,
� use of weak password-based systems,
� unauthenticated key exchange,
� signal race condition,
� use of 'magic' URLs and hidden forms,
� failure to handle errors,
� poor usability,
� information leakage.

B.4 OWASP Top Ten

The OWASP Top Ten Vulnerability list for 2007 is the following25:

� Cross Site Scripting (XSS)
� Injection Flaws
� Malicious File Execution
� Insecure Direct Object Reference
� Cross Site Request Forgery (CSRF)
� Information Leakage and Improper Error Handling
� Broken Authentication and Session Management
� Insecure Cryptographic Storage
� Insecure Communications
� Failure to Restrict URL Access

B.5 Seven Kingdoms

The Seven Kingdoms de�ned by Gary McGraw [McG06] are the following. Note that each
Kingdom contains a certain number of Phyla, that help give more precise hints so as the
actual vulnerabilities.

� Input Validation and representation,
� API abuse,
� Security Features,

25http://www.owasp.org/index.php/Top_10_2007-WIKI-FORMAT-TEST

INRIA

OSGi Vulnerabilities 45

� Time and state,
� error handling,
� code quality,
� encapsulation
� + environment

RR n° 6231

46 Parrend & Frénot

C Formal Expression of the Vulnerability Pattern

This section presents the Vulnerability Pattern in the Augmented Backus Naur Form (BNF)
[CO05].

The current grammar is not meant to be closed: it re�ects the knowledge relative to
the considered vulnerabilities at a given time. It can be extended with additional attribute
values.

The catalog of the OSGi Malicious Bundles is referred as the `mb' catalog.

Vulnerability Reference

� VULNERABILITY_NAME ::= text
� IDENTIFIER ::= CATALOG_ID.SRC_REF.ID
with:
CATALOG_ID ::= mb
SRC_REF ::= archive|java|native|osgi
ID ::= (0-9)*

� ORIGIN ::= text
� LOCATION ::= Bundle (Archive | Manifest | Activator | Fragment) | Application
Code - (Native Code | Java (Code | API) | OSGi API)

� SOURCE ::= (ENTITY (FUNCTIONNALITY | FLAW ;)+;)+
with ENTITY ::= OS | JVM - (Runtime API | APIs)| OSGi Platform - ((Module |
Life-Cycle | Service) Layer | Bundle Repository Client)| Application Code
FUNCTIONNALITY ::= Kill utility | Value of Method Parameters | (System.exit
| Runtime.halt) method | Native Code Execution | Thread API | Re�ection API |
ClassLoader API | File API | Java Archive | Bundle Management | Bundle Fragments
and:
FLAW ::= No Algorithm Safety - (Java | Native Code)| Non OSGi R4-compliant
Digital Signature Validation in the JVM | No Veri�cation of Bundle Archive Validity
| No Check of Size of Loaded Bundles | No Check of Size of stored Data | No safe
Bundle Start | No Removal of Uninstalled Bundle Data | Bundle Meta-data Handling
- No Safe-Default | Uncontrolled Service Registration | Architecture of the Application
- No Validation of Service Dependency

� TARGET ::= Platform | OSGi Element - (Platform Management Utility | Bundle |
Service|Package)

� CONSEQUENCE_TYPE ::= (Unavailability | Performance Breakdown | Undue Ac-
cess)(- (Platform | Service | Package)(, (Platform | Service | Package))*)?

� INTRODUCTION_TIME ::= Platform Design or Implementation | Development |
Bundle Meta-data Generation | Bundle Digital Signature | Installation | Service Pub-
lication or Resolution

� EXPLOIT_TIME ::= Download | Installation | Bundle Start | Execution

Vulnerability Description

INRIA

OSGi Vulnerabilities 47

� DESCRIPTION ::= text
� PRECONDITIONS ::= text
� ATTACK_PROCESS ::= text
� CONSEQUENCE_DESCRIPTION ::= text
� SEE_ALSO ::= VULNERABILITY_NAME (, VULNERABILITY_NAME)*

Vulnerability Implementation

� CODE_REFERENCE ::= FILE_NAME
with FILE_NAME the name of a �le, as de�ned by Unix File Names

� OSGI_PROFILE ::= CDC-1.0/Foundation-1.0 | OSGi/Minimum-1.1 | JRE-1.1 | J2SE-
1.2 | J2SE-1.3 | J2SE-1.4 | J2SE-1.5 | J2SE-1.6 | PersonalJava-1.1 | PersonalJava-1.2 |
CDC-1.0/PersonalBasis-1.0 | CDC-1.0/PersonalJava-1.0

� DATE ::= MONTH.DAY.YEAR
with MONTH ::= (1-12), DAY ::= (1-31), YEAR ::= (0-3000)

� TEST_COVERAGE ::= (0-100) %
� TESTED_ON ::= Oscar | Felix | Knop�er�sh | Equinox

Protection

� EXISTING_MECHANISMS ::= Java Permissions | OSGi AdminPermission | SFelix
OSGi Security Layer | -

� ENFORCEMENT_POINT ::= Platform startup | Bundle Installation | -
� POTENTIAL_MECHANISMS ::= (POTENTIAL_MECHANISM_NAME (POTEN-
TIAL_MECHANISM_DESCR)?)+ with POTENTIAL_MECHANISM_NAME ::=
Code static Analysis | OSGi Platform Modi�cation - (Bundle Startup Process | Instal-
lation Meta-data Handling | Service Publication)| Bundle size control before down-
load | Service-level dependency validation | Resource Control and Isolation - (CPU |
Memory | Disk Space)| Access Control - FileSystem | Miscellaneous | - and POTEN-
TIAL_MECHANISM_DESCR ::= text

� ATTACK_PREVENTION ::= Stop a ill-behaving thread | -
� REACTION ::= Uninstall the malicious bundle | Erase �les | Stop the system process
| Restart the platform | -

RR n° 6231

48 Parrend & Frénot

D Vulnerability Catalog

D.1 Bundle Archive

D.1.1 Invalid Digital Signature Validation

Vulnerability Reference

� Vulnerability Name: Invalid Digital Signature Validation
� Identi�er: Mb.archive.1
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Archive
� Source: OSGi Platform - Life-Cycle Layer (Non OSGi R4-compliant Digital Signature
Validation in the JVM)

� Target: Platform
� Consequence Type: Undue Access
� Introduction Time: Bundle Digital Signature
� Exploit Time: Installation

Vulnerability Description

� Description: A bundle which signature is NOT compliant to the OSGi R4 Digital
Signature is installed on the platform

� Preconditions: No Digital Signature Validation, or Digital Signature Validation Pro-
cess that relies on the Java JarFile API to perform the validation of the digital signa-
ture. The bundle signature must be non OSGi R4 compliant in one of the following
ways: resources have been removed from the archive; resources have been added; the
�rst resources in the archive are NOT the Manifest File, the Signature File and the
Signature Block �le in this order (see [PF06]).

� Attack Process: Install a bundle with an invalid digital signature (see preconditions)
� Consequence Description: -
� See Also: -

Protection

� Existing Mechanisms: SFelix OSGi Security Layer
� Enforcement Point: Bundle Installation
� Potential Mechanisms: -
� Attack Prevention: -
� Reaction: Uninstall the malicious bundle

Vulnerability Implementation

� Code Reference: Bindex-resourceRemoved-1.0.jar, bindex-resourcesAdded-1.0.jar,
bindex-unvalidResourceOrder-1.0.jar

INRIA

OSGi Vulnerabilities 49

� OSGi Pro�le: J2SE-1.5
� Date: 2007-04-25
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix
� Known Robust Platforms: SFelix

RR n° 6231

50 Parrend & Frénot

D.1.2 Big Component Installer

Vulnerability Reference

� Vulnerability Name: Big Component Installer
� Identi�er: Mb.archive.2
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Archive
� Source: OSGi Platform - Bundle Repository Client (No Check of Size of Loaded
Bundles)

� Target: Platform
� Consequence Type: Performance Breakdown
� Introduction Time: Platform Design or Implementation
� Exploit Time: Execution

Vulnerability Description

� Description: Remote installation of a bundle which size is of similar to the available
device memory

� Preconditions: OSGi platform running on a memory limited device
� Attack Process: -
� Consequence Description: Little memory is available for subsequent operations
� See Also: Big File Creator

Protection

� Existing Mechanisms: OSGi AdminPermission
� Enforcement Point: -
� Potential Mechanisms: Bundle size control before download
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: -
� OSGi Pro�le: J2SE-1.5
� Date: 2007-02-20
� Test Coverage: 00%

INRIA

OSGi Vulnerabilities 51

D.1.3 Decompression Bomb

Vulnerability Reference

� Vulnerability Name: Decompression Bomb
� Identi�er: Mb.archive.3
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Archive
� Source: OSGi Platform - Life-Cycle Layer (No Veri�cation of Bundle Archive Valid-
ity)

� Target: Platform
� Consequence Type: Performance Breakdown
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: The Bundle Archive is a decompression Bomb (either a huge �le made
of identical bytes, or a recursive archive)

� Preconditions: -
� Attack Process: Provide a Bundle Archive that is a decompression Bomb for instal-
lation (on a OBR, etc.)

� Consequence Description: Important consumption of CPU or memory.
� See Also: -

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: OSGi Platform Modi�cation - Bundle Startup Process
(Check that the Bundle is not a Decompression Bomb archive)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.decompressionbomb-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2007-04-20
� Test Coverage: 50%

RR n° 6231

52 Parrend & Frénot

D.2 Bundle Manifest

D.2.1 Duplicate Package Import

Vulnerability Reference

� Vulnerability Name: Duplicate Package Import
� Identi�er: Mb.osgi.1
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Manifest
� Source: OSGi Platform - Module Layer (Bundle Meta-data Handling - No Safe-
Default)

� Target: OSGi Element - Bundle
� Consequence Type: Unavailability
� Introduction Time: Bundle Meta-data Generation
� Exploit Time: Installation

Vulnerability Description

� Description: A package is imported twice (or more) according to manifest attribute
'Import-Package'. In the Felix and Knop�er�sh OSGi implementations, the bundle
can not be installed

� Preconditions: -
� Attack Process: -
� Consequence Description: -
� See Also: Excessive Size of Manifest File, Unvalid Activator Meta-data, Erroneous
values of Manifest attributes, Insu�cient User Meta-data

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: OSGi Platform Modi�cation - Installation Meta-data Han-
dling (ignore the repeated imports during OSGi metadata analysis)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.duplicateimport-0.1.ja
� OSGi Pro�le: J2SE-1.5
� Date: 2006-10-28
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Knop�er�sh
� Known Robust Platforms: Equinox; Concierge; SFelix

INRIA

OSGi Vulnerabilities 53

D.2.2 Excessive Size of Manifest File

Vulnerability Reference

� Vulnerability Name: Excessive Size of Manifest File
� Identi�er: Mb.osgi.2
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Manifest
� Source: OSGi Platform - Module Layer (Bundle Meta-data Handling - No Safe-
Default)

� Target: OSGi Element - Bundle
� Consequence Type: Unavailability
� Introduction Time: Bundle Meta-data Generation
� Exploit Time: Installation

Vulnerability Description

� Description: A bundle with a huge number of (similar) package imports (more than
1 Mbyte)

� Preconditions: -
� Attack Process: Insert a big number of imports in the manifest �le of the bundle
� Consequence Description: In the Felix and Knop�er�sh implementations, the
launcher process takes a long time (several minutes) to parse the metadata �le

� See Also: Duplicate Package Import, Unvalid Activator Meta-data, Erroneous values
of Manifest attributes, Insu�cient User Meta-data

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: OSGi Platform Modi�cation - Installation Meta-data Han-
dling (check the size of manifest before the installation; more generally, check the
format of the manifest size before the installation)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.hugemanifest-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-10-28
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Knop�er�sh; Concierge
� Known Robust Platforms: SFelix; Equinox

RR n° 6231

54 Parrend & Frénot

D.2.3 Erroneous values of Manifest attributes

Vulnerability Reference

� Vulnerability Name: Erroneous values of Manifest attributes
� Identi�er: Mb.osgi.3
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Manifest
� Source: OSGi Platform - Module Layer (Bundle Meta-data Handling - No Safe-
Default)

� Target: OSGi Element - Bundle
� Consequence Type: Unavailability
� Introduction Time: Bundle Meta-data Generation
� Exploit Time: Installation

Vulnerability Description

� Description: A bundle that provides false meta-data, in this example an non existent
bundle update location

� Preconditions: -
� Attack Process: Set a false value for a given meta-data entry
� Consequence Description: The actions that rely on the meta-data can not be
executed (here, no update possible)

� See Also: Duplicate Import, Excessive Size of Manifest File

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: OSGi Platform Modi�cation - Installation Meta-data Han-
dling (check the format of the manifest size before the installation, and provide failsafe
default)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.malformedupdatelocation-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-10-28
� Test Coverage: 10%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 55

D.3 Bundle Activator

D.3.1 Management Utility Freezing - In�nite Loop

Vulnerability Reference

� Vulnerability Name: Management Utility Freezing - In�nite Loop
� Extends: In�nite Loop in Method Call
� Identi�er: Mb.osgi.4
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Activator
� Source: OSGi Platform - Life-Cycle Layer (No safe Bundle Start)
� Target: OSGi Element - Platform Management Utility
� Consequence Type: Performance Breakdown; Unavailability
� Introduction Time: Development
� Exploit Time: Bundle Start

Vulnerability Description

� Description: An in�nite loop is executed in the Bundle Activator
� Preconditions: -
� Attack Process: An in�nite loop is executed in the Bundle Activator
� Consequence Description: Block the OSGi Management entity (the felix, equinox
or knop�er�sh shell; when launched in the KF graphical interface, the shell remain
available but the GUI is frozen). Because of the in�nite loop, most CPU resource is
consumed

� See Also: CPU Load Injection, In�nite Loop in Method Call, Stand Alone In�nite
Loop, Hanging Thread

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Code static Analysis ; Resource Control and Isolation -
CPU ; OSGi Platform Modi�cation - Bundle Startup Process (launch the bundle ac-
tivator in a separate thread to prevent startup hanging)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.in�niteloopinmethodcall-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-24

RR n° 6231

56 Parrend & Frénot

� Test Coverage: 10%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge
� Known Robust Platforms: SFelix

INRIA

OSGi Vulnerabilities 57

D.3.2 Management Utility Freezing - Thread Hanging

Vulnerability Reference

� Vulnerability Name: Management Utility Freezing - Thread Hanging
� Extends: Hanging Thread
� Identi�er: Mb.osgi.5
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Activator
� Source: OSGi Platform - Life-Cycle Layer (No safe Bundle Start)
� Target: OSGi Element - Platform Management Utility
� Consequence Type: Unavailability
� Introduction Time: Development
� Exploit Time: Bundle Start

Vulnerability Description

� Description: A hanging thread in the Bundle Activator makes the management
utility freeze

� Preconditions: -
� Attack Process: -
� Consequence Description: Block the OSGi Management entity (the felix, equinox
or knop�er�sh shell; when launched in the KF graphical interface, the shell remain
available but the GUI is frozen).

� See Also: Management Utility Freezing - In�nite Loop, Hanging Thread

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: OSGi Platform Modi�cation - Bundle Startup Process
(launch the bundle activator in a separate thread); Code static Analysis

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.hangingthread-0.1.jar, fr.inria.ares.hangingthread2-
0.1.jar

� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-24
� Test Coverage: 20%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge
� Known Robust Platforms: SFelix

RR n° 6231

58 Parrend & Frénot

D.4 Bundle Code - Native

D.4.1 Runtime.exec.kill

Vulnerability Reference

� Vulnerability Name: Runtime.exec.kill
� Identi�er: Mb.native.1
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Native Code
� Source: OS (Kill utility); JVM - Runtime API (Native Code Execution)
� Target: Platform
� Consequence Type: Unavailability
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A bundle that stops the execution platform through an OS call
� Preconditions: No SecurityManager, or FilePermission `execute' on the required
utilities (kill, ps, grep, cut)

� Attack Process: Kill the OS process which corresponds to the execution platform;
this process is identi�ed as far it is the parent process of the process in which the
malicious script is executed

� Consequence Description: The shutdown hooks of the platforms arer executed
� See Also: System.exit, Runtime.halt, Recursive Thread Creation

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: Code static Analysis
� Attack Prevention: -
� Reaction: Restart the platform

Vulnerability Implementation

� Code Reference: Fr.inria.ares.runtime_exec_kill-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-21
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 59

D.4.2 CPU Load Injection

Vulnerability Reference

� Vulnerability Name: CPU Load Injection
� Identi�er: Mb.native.2
� Origin: MOSGI, Ares research project
� Location of Exploit Code: Application Code - Native Code
� Source: Application Code (No Algorithm Safety - Native Code); JVM - Runtime API
(Native Code Execution)

� Target: Platform
� Consequence Type: Unavailability
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A malicious bundle that consumes 80% of the host CPU
� Preconditions: No SecurityManager, or RuntimePermission `loadLibrary'
� Attack Process: Execute a C call that consume CPU by switching between CPU-
intensive calculation and sleep time, according to the speci�ed ratio

� Consequence Description: Most of the available CPU of the system is consumed
arti�cially

� See Also: Memory Load Injection, Ramping Memory Load Injection, In�nite Loop,
Stand-alone In�nite Loop

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: Miscellaneous (extension of the Java-Level security mecha-
nisms to the native code)

� Attack Prevention: -
� Reaction: Uninstall the malicious bundle

Vulnerability Implementation

� Code Reference: Fr.inria.ares.cpuloadinjector-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-24
� Test Coverage: 00%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

RR n° 6231

60 Parrend & Frénot

D.5 Bundle Code - Java

D.5.1 System.exit

Vulnerability Reference

� Vulnerability Name: System.exit
� Identi�er: Mb.java.1
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java API
� Source: JVM - Runtime API (System.exit method)
� Target: Platform
� Consequence Type: Unavailability
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A bundle that stops the platform by calling 'System.exit(0)'
� Preconditions: No SecurityManager, or presence of the RuntimePermission `exitVM'
� Attack Process: -
� Consequence Description: -
� See Also: Runtime.halt, Exec.Kill, Recursive Thread Creation

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: Code static Analysis
� Attack Prevention: -
� Reaction: Restart the platform

Vulnerability Implementation

� Code Reference: Fr.inria.ares.system_exit-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-11
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 61

D.5.2 Runtime.halt

Vulnerability Reference

� Vulnerability Name: Runtime.halt
� Identi�er: Mb.java.2
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java API
� Source: JVM - Runtime API (Runtime.halt method)
� Target: Platform
� Consequence Type: Unavailability
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A bundle that stops the platform by calling 'Runtime.getRuntime.halt(0)'
� Preconditions: No SecurityManager, or RuntimePermission `exitVM'
� Attack Process: -
� Consequence Description: The shutdown hooks are by-passed
� See Also: System.exit, Exec.Kill, Recursive Thread Creation

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: Code static Analysis
� Attack Prevention: -
� Reaction: Restart the platform

Vulnerability Implementation

� Code Reference: Fr.inria.ares.runtime_halt-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-11
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

RR n° 6231

62 Parrend & Frénot

D.5.3 Recursive Thread Creation

Vulnerability Reference

� Vulnerability Name: Recursive Thread Creation
� Identi�er: Mb.java.3
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java API
� Source: JVM - APIs (Thread API); Application Code (No Algorithm Safety - Java)
� Target: Platform
� Consequence Type: Unavailability
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: The execution platform is brought to crash by the creation of an expo-
nential number of threads

� Preconditions: -
� Attack Process: Each thread created by the attack bundle creates three other
threads, and contains a relatively small payload (a pdf �le). An excessive number
of StackOver�owErrors causes an OutOfMemoryError

� Consequence Description: -
� See Also: System.exit, Runtime.halt, Exec.kill, Exponential Object Creation

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: -
� Attack Prevention: Stop the ill-behaving thread
� Reaction: Restart the platform

Vulnerability Implementation

� Code Reference: Fr.inria.ares.exponentialthreadnumber-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-21
� Test Coverage: 50%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 63

D.5.4 Hanging Thread

Vulnerability Reference

� Vulnerability Name: Hanging Thread
� Identi�er: Mb.java.4
� Origin: Java puzzlers 77, 85 [BG05]
� Location of Exploit Code: Application Code - Java API
� Source: JVM - APIs (Thread API); Application Code (Value of Method Parameters)
� Target: OSGi Element - Service; OSGi Element - Package
� Consequence Type: Unavailability
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: Thread that make the calling entity hang (service, or package)
� Preconditions: -
� Attack Process: Use the Thread.sleep call with a large sleep duration to make the
execution hang

� Consequence Description: If the sleep call is performed in a synchronized block,
the SIG_KILL (Ctrl+C) signal is caught by the platform

� See Also: In�nite Startup Loop

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Code static Analysis
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.hangingthread-0.1.jar, fr.inria.ares.hangingthread2-
0.1.jar

� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-28
� Test Coverage: 20%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

RR n° 6231

64 Parrend & Frénot

D.5.5 Sleeping Bundle

Vulnerability Reference

� Vulnerability Name: Sleeping Bundle
� Identi�er: Mb.java.5
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java API
� Source: JVM - APIs (Thread API)
� Target: OSGi Element - Service; OSGi Element - Package
� Consequence Type: Performance Breakdown
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A malicious bundle that goes to sleep during a speci�ed amount of time
before having �nished its job (experience time is 50 sec.)

� Preconditions: -
� Attack Process: -
� Consequence Description: -
� See Also: Hanging Thread

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Code static Analysis
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.sleepingbundle-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-28
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 65

D.5.6 Big File Creator

Vulnerability Reference

� Vulnerability Name: Big File Creator
� Identi�er: Mb.java.6
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java API
� Source: JVM - APIs (File API)
� Target: Platform
� Consequence Type: Performance Breakdown
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A malicious bundle that create a big (relative to available resources)
�les to consume disk memory space

� Preconditions: No SecurityManager, or FilePermission `write' to the malicious bundl
� Attack Process: -
� Consequence Description: -
� See Also: Big Bundle Installer

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: Resource Control and Isolation - Disk Space (per user/bundle);
Access Control - FileSystem (Limit the access to the FileSystem to the data directory
of the bundle; control the size of the data created through the BundleContext)

� Attack Prevention: -
� Reaction: Erase �les

Vulnerability Implementation

� Code Reference: Fr.inria.ares.big�lecreator-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-29
� Test Coverage: 00%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

RR n° 6231

66 Parrend & Frénot

D.5.7 Code Observer

Vulnerability Reference

� Vulnerability Name: Code Observer
� Identi�er: Mb.java.7
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java API
� Source: JVM - APIs (Re�ection API; ClassLoader API)
� Target: OSGi Element - Package; OSGi Element - Service
� Consequence Type: Undue Access
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A component that observes the content of another one
� Preconditions: No SecurityManager, or Re�ectPermission
� Attack Process: Use of the re�ection API and the ClassLoader API
� Consequence Description: Observation of the implementation of the published
packages and services, the classes that are aggregated to these packages and services,
and classes which name are known (or guessed)

� See Also: Component Data Modi�er, Hidden Method Launcher

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: -
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Privateclassspy/fr.inria.ares.serviceabuser-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2007-02-12
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; SFelix

INRIA

OSGi Vulnerabilities 67

D.5.8 Component Data Modi�er

Vulnerability Reference

� Vulnerability Name: Component Data Modi�er
� Extends: Code Observer
� Identi�er: Mb.java.8
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java API
� Source: JVM - APIs (Re�ection API; ClassLoader API)
� Target: OSGi Element - Package; OSGi Element - Service
� Consequence Type: Undue Access
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A bundle that modi�es the data (i.e. the value of the attributes of the
classes) of another one

� Preconditions: No SecurityManager or Re�ectPermission set; the name of the non-
exported modi�ed class must be known beforehand, and contain a public static �eld.

� Attack Process: Use of the re�ection API and the ClassLoader API to access and
modify the value of attributes

� Consequence Description: Modi�cation of the public �elds of the objects that are
accessible from another bundle (service implementations, or objects that are attributes
of these service implementations, or objects that are attributes of these latter objects,
...), or of the public static (non �nal) �elds of classes which name is known

� See Also: Code Observer, Hidden Method Launcher

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: -
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Privateclassmanipulator/fr.inria.ares.serviceabuser-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2007-02-12
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

RR n° 6231

68 Parrend & Frénot

D.5.9 Hidden Method Launcher

Vulnerability Reference

� Vulnerability Name: Hidden Method Launcher
� Extends: Code Observer
� Identi�er: Mb.java.9
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java API
� Source: JVM - APIs (Re�ection API; ClassLoader API)
� Target: OSGi Element - Package
� Consequence Type: Undue Access
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A bundle that executes methods from classes that are not exported
of provided as service. All classes that are referenced (directly or indirectly) as class
attributes can be accessed. Only public methods can be invoked

� Preconditions: No SecurityManager, or Re�ectPermission set
� Attack Process: Use of the re�ection API and the ClassLoader API to access and
executes methods in classes that are not exported by the bundle

� Consequence Description: -
� See Also: Code Observer, Component Data Modi�er

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: -
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Hiddenclassexecutor/fr.inria.ares.serviceabuser-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2007-02-12
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 69

D.5.10 Memory Load Injection

Vulnerability Reference

� Vulnerability Name: Memory Load Injection
� Identi�er: Mb.java.10
� Origin: MOSGI Ares Research Project (OSGi Platform Monitoring)
� Location of Exploit Code: Application Code - Java API
� Source: Application Code (No Algorithm Safety - Java)
� Target: Platform
� Consequence Type: Performance Breakdown
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A malicious bundle that consumes most of available memory (61,65
MB in the example)

� Preconditions: -
� Attack Process: Store a huge amount of data in a byte array
� Consequence Description: Only a limited memory space is available for the exe-
cution of programs

� See Also: Ramping Memory Load Injection, CPU Load Injection

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Code static Analysis ; Resource Control and Isolation -
Memory

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.memloadinjector-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-24
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

RR n° 6231

70 Parrend & Frénot

D.5.11 Stand Alone In�nite Loop

Vulnerability Reference

� Vulnerability Name: Stand Alone In�nite Loop
� Identi�er: Mb.java.11
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java Code
� Source: Application Code (No Algorithm Safety - Java)
� Target: Platform
� Consequence Type: Performance Breakdown
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A void loop in a lonesome thread that consumes much of the available
CPU

� Preconditions: -
� Attack Process: In�nite loop launched in an independent thread
� Consequence Description: -
� See Also: In�nite Startup Loop, CPU Load Injection

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Code static Analysis ; Resource Control and Isolation -
CPU

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.standaloneloop-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-09-22
� Test Coverage: 10%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 71

D.5.12 In�nite Loop in Method Call

Vulnerability Reference

� Vulnerability Name: In�nite Loop in Method Call
� Identi�er: Mb.java.12
� Origin: Java puzzlers 26 to 33 [BG05]
� Location of Exploit Code: Application Code - Java Code
� Source: Application Code (No Algorithm Safety - Java)
� Target: Platform; OSGi Element - Service; OSGi Element - Package
� Consequence Type: Performance Breakdown - Platform; Unavailability - Service,
Package

� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: An in�nite loop is executed in a method call (at class use, package use)
� Preconditions: -
� Attack Process: An in�nite loop is executed in a method call
� Consequence Description: Block the calling entity (the calling class or service.
Because of the in�nite loop, most CPU resource is consumed

� See Also: CPU Load Injection, Stand-alone In�nite Loop, Hanging Thread

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Code static Analysis ; Resource Control and Isolation -
CPU

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.in�niteloopinmethodcall-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-08-24
� Test Coverage: 10%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

RR n° 6231

72 Parrend & Frénot

D.5.13 Exponential Object Creation

Vulnerability Reference

� Vulnerability Name: Exponential Object Creation
� Identi�er: Mb.java.13
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - Java Code
� Source: Application Code (No Algorithm Safety - Java)
� Target: OSGi Element - Service; OSGi Element - Package
� Consequence Type: Unavailability
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: Objects are created in a exponential way
� Preconditions: -
� Attack Process: A given object create in its constructor 3 instances of object of the
same class

� Consequence Description: The method call aborts with a 'StackOver�owError'
� See Also: Recursive Thread Creation

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Code static Analysis ; Resource Control and Isolation -
Memory

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.exponentialobjectcreation-0.1
� OSGi Pro�le: J2SE-1.5
� Date: 2007-01-09
� Test Coverage: 50%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 73

D.6 Bundle Code - OSGi APi

D.6.1 Launch a Hidden Bundle

Vulnerability Reference

� Vulnerability Name: Launch a Hidden Bundle
� Identi�er: Mb.osgi.6
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - OSGi API
� Source: OSGi Platform - Life-Cycle Layer (Bundle Management); JVM - APIs (File
API)

� Target: Platform
� Consequence Type: Undue Access
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A bundle that launches another bundle it contains (the contained bun-
dle could be masqued as with a 'MyFile.java' �le name)

� Preconditions: No SecurityManager, or OSGi PermissionAdmin and FilePermission
`write' for the malicious bundle

� Attack Process: A bundle creates a new bundle on the �le system, and launches i
� Consequence Description: A non foreseen bundle is installed. If install time check-
ing exists (such as digital signature), it passes through the veri�cation process

� See Also: Pirat Bundle Manager

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: -
� Attack Prevention: -
� Reaction: Uninstall the malicious bundle

Vulnerability Implementation

� Code Reference: Fr.inria.ares.silentloader-0.1.jar, fr.inria.ares.silentloader.concierge-
0.1.jar (without swing)

� OSGi Pro�le: J2SE-1.5
� Date: 2006-10-28
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

RR n° 6231

74 Parrend & Frénot

D.6.2 Pirat Bundle Manager

Vulnerability Reference

� Vulnerability Name: Pirat Bundle Manager
� Identi�er: Mb.osgi.7
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - OSGi API
� Source: OSGi Platform - Life-Cycle Layer (Bundle Management)
� Target: OSGi Element - Bundle
� Consequence Type: Undue Access
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A bundle that manages others without being requested to do so(here:
stops and starts the victim bundle)

� Preconditions: No SecurityManager, or OSGi Permission Admin
� Attack Process: The pirat bundle accesses to the bundle context, and then to its
victim bundle

� Consequence Description: -
� See Also: Launch Hidden Bundle

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: -
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.piratbundlemanager-0.1.jar, fr.inria.ares.piratbundlemanager.concierge-
0.1.jar (no swing)

� OSGi Pro�le: J2SE-1.5
� Date: 2006-10-30
� Test Coverage: 40%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 75

D.6.3 Zombie Data

Vulnerability Reference

� Vulnerability Name: Zombie Data
� Identi�er: Mb.osgi.8
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - OSGi API
� Source: OSGi Platform - Life-Cycle Layer (No Removal of Uninstalled Bundle Data)
� Target: Platform
� Consequence Type: Performance Breakdown
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: Data stored in the local OSGi data store are not deleted when the
related bundle is uninstalled. It thus becomes unavailable and consumes disks space
(especially on resource constraint devices)

� Preconditions: No SecuriyManager, or FilePermission set
� Attack Process: -
� Consequence Description: -
� See Also: Big File Creator

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: OSGi Platform Modi�cation - Bundle Uninstall Process
(Delete Bundle Data when Bundles are uninstalled)

� Attack Prevention: -
� Reaction: Erase �les

Vulnerability Implementation

� Code Reference: Fr.inria.ares.big�lecreator-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2007-04-20
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Concierge
� Known Robust Platforms: Equinox; Knop�er�sh; SFelix

RR n° 6231

76 Parrend & Frénot

D.6.4 Cycle Between Services

Vulnerability Reference

� Vulnerability Name: Cycle Between Services
� Identi�er: Mb.osgi.9
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - OSGi API
� Source: OSGi Platform - Service Layer (Architecture of the Application - No Valida-
tion of Service Dependency)

� Target: OSGi Element - Service; OSGi Element - Package
� Consequence Type: Unavailability
� Introduction Time: Service Publication or Resolution
� Exploit Time: Execution

Vulnerability Description

� Description: A cycle exists in the services call
� Preconditions: -
� Attack Process: Service 1 calls service 2, which calls service 1. The attack can be
implemented as a fake 'service 2', which calls service 1 back instead of return properly
from the method that service 1 called

� Consequence Description: `java.lang.StackOver�owError', service 1 can not be
executed

� See Also: -

Protection

� Existing Mechanisms: -
� Enforcement Point: -
� Potential Mechanisms: Service-level dependency validation
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.clientserver1-0.1.jar, fr.inria.ares.clientserver2-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2006-10-28
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge; SFelix

INRIA

OSGi Vulnerabilities 77

D.6.5 Numerous Service Registration

Vulnerability Reference

� Vulnerability Name: Numerous Service Registration
� Identi�er: Mb.osgi.10
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - OSGi API
� Source: OSGi Platform - Service Layer (Uncontrolled Service Registration)
� Target: OSGi Element - Bundle; OSGi Element - Platform Management Utility
� Consequence Type: Performance Breakdown
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: Registration of a high number of (possibly identical) services through
an loop

� Preconditions: No SecurityManager, or OSGi ServicePermission
� Attack Process: Publish a given service in a(n) (e.g. in�nite) loop
� Consequence Description: Important duration of bundle stop
� See Also: -

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: OSGi Platform Modi�cation - Service Publication (limita-
tion of the number of services published in the framework)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.numerousservices-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2007-01-09
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; Concierge
� Known Robust Platforms: SFelix

RR n° 6231

78 Parrend & Frénot

D.6.6 Freezing Numerous Service Registration

Vulnerability Reference

� Vulnerability Name: Freezing Numerous Service Registration
� Identi�er: Mb.osgi.11
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Application Code - OSGi API
� Source: OSGi Platform - Service Layer (Uncontrolled Service Registration)
� Target: OSGi Element - Bundle; OSGi Element - Platform Management Utility
� Consequence Type: Performance Breakdown
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: Registration of a high number of (possibly identical) services through
an loop, in the Concierge OSGi Platform implementation

� Preconditions: No SecurityManager, or OSGi ServicePermission; execution in the
Concierge OSGi Platform

� Attack Process: Publish a given service in a(n) (e.g. in�nite) loop
� Consequence Description: The Platform almost totally freeze. OutOfMemory-
Errors are reported very frequently when the shell is used or when bundles perform
actions.

� See Also: -

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: OSGi Platform Modi�cation - Service Publication (limita-
tion of the number of services published in the framework)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fr.inria.ares.numerousservices-0.1.jar
� OSGi Pro�le: J2SE-1.5
� Date: 2007-04-20
� Test Coverage: 100%
� Known Vulnerable Platforms: Concierge

INRIA

OSGi Vulnerabilities 79

D.7 Bundle Fragments

D.7.1 Execute Hidden Classes

Vulnerability Reference

� Vulnerability Name: Execute Hidden Classes
� Identi�er: Mb.osgi.12
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Fragment
� Source: OSGi Platform - Module Layer (Bundle Fragments)
� Target: OSGi Element - Package
� Consequence Type: Undue Access
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A fragment bundle exports a pckage that is not made visible by the
host. Other bundles can then execute the classes in this package

� Preconditions: No SecurityManager, or BundlePermission, `HOST' set to the host,
and BundlePermission, `FRAGMENT', set to the malicious fragment

� Attack Process: -
� Consequence Description: Modi�cation of static attributes, publication of hidden
data or execution of secret procedure; Concierge does not support fragment, and does
therefore not contains this vulnerability

� See Also: Fragment Substitution, Access Protected Package through split Packages

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: -
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Usehiddenclass/packageexportfragment.jar
+ usehiddenclass/fr.inria.ares.fragmentaccomplice-0.1.jar

� OSGi Pro�le: J2SE-1.5
� Date: 2007-02-14
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; SFelix

RR n° 6231

80 Parrend & Frénot

D.7.2 Fragment Substitution

Vulnerability Reference

� Vulnerability Name: Fragment Substitution
� Identi�er: Mb.osgi.13
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Fragment
� Source: OSGi Platform - Module Layer (Bundle Fragments)
� Target: OSGi Element - Bundle
� Consequence Type: Undue Access
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A speci�c fragment bundle is replace by another, which provides the
same classes but with malicious implementation

� Preconditions: No SecurityManager, or BundlePermission `HOST' and `FRAG-
MENT' set to the required bundles, and OSGi AdminPermission set to the substitutor
bundle

� Attack Process: A malicious bundles uninstalls the current fragment, and install a
malicious one (that is embedded in it) instead

� Consequence Description: The host bundle executes a false implementations of
classes provided by a fragment; Concierge does not support fragment, and does there-
fore not contains this vulnerability

� See Also: Launch Hidden Bundle, Pirat Bundle Manager, Execute Hidden Class,
Access Protected Package through split Packages

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: -
� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fragmentprovidespackagestohost/fr.inria.ares.fragmentsubstitutor
(has an embedded fragmentprovidespackagestohost/testfragmentclone bundle)

� OSGi Pro�le: J2SE-1.5
� Date: 2007-02-16
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; SFelix

INRIA

OSGi Vulnerabilities 81

D.7.3 Access Protected Package through split Packages

Vulnerability Reference

� Vulnerability Name: Access Protected Package through split Packages
� Identi�er: Mb.osgi.14
� Origin: Ares research project `malicious-bundle'
� Location of Exploit Code: Bundle Fragment
� Source: OSGi Platform - Module Layer (Bundle Fragments)
� Target: OSGi Element - Package
� Consequence Type: Undue Access
� Introduction Time: Development
� Exploit Time: Execution

Vulnerability Description

� Description: A package is built in the fragment, that have the same name than a
package in the host. All package-protected classes and methods can then be accessed
from the fragment, and through a proxy exported in the framework

� Preconditions: No SecurityManager, or BundlePermission `HOST' and `FRAG-
MENT' set to the suitable bundles

� Attack Process: -
� Consequence Description: Concierge does not support fragment, and does there-
fore not contains this vulnerability

� See Also: Execute Hidden Class, Fragment Substitution

Protection

� Existing Mechanisms: Java Permissions
� Enforcement Point: Platform startup
� Potential Mechanisms: Miscellaneous (the Java Archive de�ned 'seal' keyword in
the Manifest File does not prevent the package to be completed by a split package in
the fragment. It probably should)

� Attack Prevention: -
� Reaction: -

Vulnerability Implementation

� Code Reference: Fragmentsplitpackage/fr.inria.ares.testhostbundle-0.1.jar +
fragmentsplitpackage/testfragment-0.1.jar +
fragmentsplitpackage/fr.inria.ares.fragmentclient-0.1.jar

� OSGi Pro�le: J2SE-1.5
� Date: 2007-02-17
� Test Coverage: 100%
� Known Vulnerable Platforms: Felix; Equinox; Knop�er�sh; SFelix

RR n° 6231

82 Parrend & Frénot

E Attack Implementations

The implementations of the presented attacks are given. Two types of attacks can be per-
formed through several di�erent implementations.

E.1 In�nite Loops

The various implementations of In�nites Loops in Java are given. They match the Vulner-
ability mb.java.8 and mb.java.12 in our catalog.

E.1.1 First Option

boolean condition==true;

While(condition);

E.1.2 Second Option

This implementation is given in the Java Puzzler #26 [BG05].

public static final int END = Integer.MAX_VALUE;

public static final int START = END - 100; // or any other start value

for (int i = START; i <= END; i++);

E.1.3 Third Option

This implementation is given in the Java Puzzler #27 [BG05].

int i = 0;

while (-1 << i != 0)

{i++;}

E.1.4 Fourth Option

This implementation is given in the Java Puzzler #28 [BG05].

INRIA

OSGi Vulnerabilities 83

double i = 1.0/0.0; //can also be set to Double.POSITIVE_INFINITY,

//or a sufficiently big number (such as 1.0e17 or bigger)

while (i == i + 1);

E.1.5 Fifth Option

This implementation is given in the Java Puzzler #45 [BG05].

public static void main(String[] args) {

workHard();

}

private static void workHard() {

try {

workHard();

} finally {

workHard();

}

}

E.1.6 Other Implementations

For further implementation of the in�nite loop, you can also refer to

� the Java Puzzler #29 (double i = Double.NaN;while(i! =i);),
� the Java Puzzler #30 (String i = �a�; while (i != i + 0)), puzzler 31 (short i = -1;
while (i != 0) i �>= 1;),

� the Java Puzzler #32 (Integer i = new Integer(0); Integer j = new Integer(0); while (i
<= j && j <= i && i != j);),

� the Java Puzzler #33 (int i = Integer.MIN_VALUE; while (i != 0 && i == -i);(//or
long i = Long.MIN_VALUE), for() loop with unsuitable modi�cation of the variables
that intervene in the stop condition).

E.2 Hanging Thread

The various implementations of Hanging Threads in Java are given. They match the Vul-
nerability mb.java.9 in our catalog.

RR n° 6231

84 Parrend & Frénot

E.2.1 First Option

This implementation is given in the Java Puzzler #77 [BG05].

INRIA

OSGi Vulnerabilities 85

import java.util.Timer;

import java.util.TimerTask;

public class Stopper extends Thread{

private volatile boolean quittingTime = false;

public void run() {

while (!quittingTime)

pretendToWork();

System.out.println(``Beer is good'');

}

private void pretendToWork() {

try {

Thread.sleep(300); // Sleeping on the job?

} catch (InterruptedException ex) { }

}

// It's quitting time, wait for worker - Called by good boss

synchronized void quit() throws InterruptedException {

quittingTime = true;

join();

}

// Rescind quitting time - Called by evil boss

synchronized void keepWorking() {

quittingTime = false;

}

public void hang(){

System.out.println(``HangingThread Stopper ready''

+``to behave badly'');

try

{

final Stopper worker = new Stopper();

worker.start();

Timer t = new Timer(true); // Daemon thread

t.schedule(new TimerTask() {

public void run() { worker.keepWorking(); }

}, 500);

Thread.sleep(400);

worker.quit();

}

catch(InterruptedException e)

{

e.printStackTrace();

}

}

}

RR n° 6231

86 Parrend & Frénot

E.2.2 Second Option

This implementation is given in the Java Puzzler #85 [BG05].

static {

Thread t = new Thread(new Runnable() {

public void run() {

initialized = true;

}

});

t.start();

try {

t.join();

} catch(InterruptedException e) {

throw new AssertionError(e);

}

}

E.2.3 Other Implementations

For other implementations, see the JLint Manual26 for `deadlock errors' (2 ocurrences).

26http://artho.com/jlint/manual.html

INRIA

OSGi Vulnerabilities 87

F XML2Tex Documentation Generator

To ease the validation of the Vulnerability Patterns and the generation of the catalog, we
developed a small tool based on XML technologies, XML2Tex. The overall process of the
XML2tex Documentation Generation process is given in Figure 18.

Figure 18 presents the overview of the XML2tex Documentation Generation process.

Figure 18: XML2Tex Process

First, the vulnerability pattern is checked against a reference XML Schema (XSD). Sec-
ondly, its is transformed into an XML report through XSL transformations. An XML Report
is a speci�c XML �le which is easily mappable to documentation: its contains in particular a
title, paragraphs, and so on. Thirdly, the XML report is transformed into a Tex �le through
an Ad-Hoc parser named Report2Tex.

The validity of the Vulnerability Patterns of the catalog is guaranteed by their validation
against the formal expression of the Pattern given in the appendix C. The well-formedness
of the XML Report and of the Tex �le are ensures by the successive parsers.

Based on XML2Tex, two additional help tools have been developed:

� XMLAnalyzer, which parses the XML Vulnerability Patterns �les and generate simple
statistical graphics, such as those given in Section 4.

� XML2TexTable, which parses the XML Vulnerability Patterns �les and generate overview
tables, such as the table 2.

RR n° 6231

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Characterization of Vulnerabilities in Component-based Systems
	Definitions
	From Databases to Top-Vulnerability Lists
	Vulnerability Patterns

	The Semi-formal Software Vulnerability Pattern
	The Structure of the Semi-formal Vulnerability Pattern
	Vulnerability Taxonomies for OSGi-based Systems
	A Vulnerability Example: `Management Utility Freezing - Infinite Loop'

	Requirements for secure OSGi Systems
	Catalog Analysis
	Requirements for a Hardened OSGi Platform
	Recommendations for a Hardened Execution Environment

	Conclusions
	The OSGi platform
	Overview
	The Bundles
	Interactions between Bundles

	Vulnerabilities List
	The Lindqvist Classification
	Common Weaknesses Enumeration (CWE)
	Nineteen Dealy Sins
	OWASP Top Ten
	Seven Kingdoms

	Formal Expression of the Vulnerability Pattern
	Vulnerability Catalog
	Bundle Archive
	Invalid Digital Signature Validation
	Big Component Installer
	Decompression Bomb

	Bundle Manifest
	Duplicate Package Import
	Excessive Size of Manifest File
	Erroneous values of Manifest attributes

	Bundle Activator
	Management Utility Freezing - Infinite Loop
	Management Utility Freezing - Thread Hanging

	Bundle Code - Native
	Runtime.exec.kill
	CPU Load Injection

	Bundle Code - Java
	System.exit
	Runtime.halt
	Recursive Thread Creation
	Hanging Thread
	Sleeping Bundle
	Big File Creator
	Code Observer
	Component Data Modifier
	Hidden Method Launcher
	Memory Load Injection
	Stand Alone Infinite Loop
	Infinite Loop in Method Call
	Exponential Object Creation

	Bundle Code - OSGi APi
	Launch a Hidden Bundle
	Pirat Bundle Manager
	Zombie Data
	Cycle Between Services
	Numerous Service Registration
	Freezing Numerous Service Registration

	Bundle Fragments
	Execute Hidden Classes
	Fragment Substitution
	Access Protected Package through split Packages

	Attack Implementations
	Infinite Loops
	First Option
	Second Option
	Third Option
	Fourth Option
	Fifth Option
	Other Implementations

	Hanging Thread
	First Option
	Second Option
	Other Implementations

	XML2Tex Documentation Generator

